Table 1 Rate constants of the Diels–Alder reaction in a 50 mM
solution of chloroindate ionic liquids
Notes and references
z Reaction procedure for the Diels–Alder reaction in ionic liquid–
Entrya
Surfactant
—
—
[C12mim]Cl
[C12mim]Cl–InCl3 w = 0.09
Rate constant
kIL/kW
micellar solution on
a preparative scale: N-benzylmaleimide 2
(18.9 mg, 0.1 mmol) was dissolved in 10 ml of a 100 mM [C10mim]Cl
solution. Freshly distilled cyclohexadiene (0.5 mmol) was added and
the reaction mixture was left stirring for 60 min at 25 1C. After
complete reaction the product crystallized from the solution at 0 1C
and was collected via filtration. Yield: 24.0 mg (92%) colourless
crystals. 1H-NMR (CDCl3, 200 MHz): d (ppm) = 7.28 (m, 5H),
6.06 (dd, J1 = 4.60 Hz, J2 = 3.04 Hz, 2H), 4.55 (s, 2H), 3.14 (m, 2H),
2.84 (m, 2H), 1.58 (m, 2H), 1.36 (m, 2H).
1
2
3
4
0.0091 0.0007
0.0096 0.001
0.0284 0.002
0.0381 0.002
1.0
b
1.06
3.13
4.20
a
Reactions were carried out with 0.0002 mmol dienophile and
b
0.012 mmol diene (ratio 1 : 60) in 1 ml of solvent at 25 1C. Addition
of 0.05 mmol InCl3.
8 All experiments were repeated at least 5 times and reaction rates are
reported as mean ꢁ SD; n Z 5.
1 (a) Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton,
Wiley Interscience, Weinheim, 2nd edn 2007; (b) V. I. Parvulescu
and C. Hardacre, Chem. Rev., 2007, 107, 2615.
2 (a) J. P. Hallett, C. L. Liotta, G. Ranieri and T. Welton, J. Org.
Chem., 2009, 74, 1864; (b) J. W. Lee, J. Y. Shin, Y. S. Chun,
H. B. Jang, C. E. Song and S. Lee, Acc. Chem. Res., 2010, 43, 985;
(c) D. S. Choi, D. H. Kim, U. S. Shin, R. R. Deshmukh, S. Lee and
C. E. Song, Chem. Commun., 2007, 3467.
3 (a) J. Bowers, C. P. Butts, P. J. Martin and M. C. Vergara-
Gutierrez, Langmuir, 2004, 20, 2191; (b) S. Dorbritz, W. Ruth
and U. Kragl, Adv. Synth. Catal., 2005, 347, 1273;
(c) Z. Miskolczy, K. Sebok-Nagy, L. Biczok and S. Gokturk,
Chem. Phys. Lett., 2004, 400, 296; (d) I. Goodchild, L. Collier,
S. L. Millar, I. Prokes, J. C. D. Lord, C. P. B. Butts, J. Bowers,
J. R. P. Webster and R. K. Heenan, J. Colloid Interface Sci., 2007,
307, 445.
4 B. L. Bhargava and M. L. Klein, J. Phys. Chem. B, 2009,
113, 9499.
5 (a) P. Zare, A. Stojanovic, F. Herbst, J. Akbarzadeh, H. Peterlik
and W. H. Binder, Macromolecules, 2012, 45, 2074; (b) M. Blesic,
M. H. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo
and A. Lopes, Green Chem., 2007, 9, 481; (c) M. Blesic,
M. Swadz´ ba-Kwasny, J. D. Holbrey, J. N. Canongia Lopes,
´
K. R. Seddon and L. P. N. Rebelo, Phys. Chem. Chem. Phys.,
2009, 11, 4260; (d) O. A. El Seoud, P. A. R. Pires, T. Abdel-
Moghny and E. L. Bastos, J. Colloid Interface Sci., 2007, 313, 296.
Fig. 4 Size distribution by intensity in the course of the Diels–Alder
6 J. Łuczak, J. Hupka, J. Thoming and C. Jungnickel, Colloids Surf.,
A, 2008, 329, 125.
¨
reaction in 100 mM [C10mim]Cl solution.
7 H. B. Klevens, J. Am. Oil Chem. Soc., 1953, 30, 74.
8 T. Dwars, E. Paetzold and G. Oehme, Angew. Chem., Int. Ed.,
2005, 44, 7174.
9 W. Blokzijl, M. J. Blandamer and J. B. F. N. Engbert, J. Am.
Chem. Soc., 1991, 113, 4241.
10 T. Rispens and J. B. F. N. Engbert, J. Org. Chem., 2002, 67, 7369.
11 A. Aggarwal, N. L. Lancaster, A. R. Sethi and T. Welton, Green
Chem., 2002, 4, 517.
composed of micelles. Once 1,3-cyclohexadiene was added, the
size distribution became significantly broader and was shifted
to larger aggregates within the reaction time, until after about
30 min the size and shape did not significantly change anymore
(Fig. 4). A similar pattern was observed for Diels–Alder
reactions run in aqueous solutions of [C12mim]Cl and
[C14mim]Cl (ESIz, Fig. S2 and S3).
12 D. A. Jager and C. E. Tucker, Tetrahedron Lett., 1989, 30, 1785.
¨
13 A. Vidis, C. A. Ohlin, G. Laurenczy, E. Kusters, G. Sedelmeier and
¨
P. J. Dyson, Adv. Synth. Catal., 2005, 347, 266.
14 S. Tiwari and A. Kumar, Angew. Chem., 2006, 118, 4942.
15 (a) M. J. Earle, U. Hakala, C. Hardacre, J. Karkkainen,
B.J. McAuley, D. W. Rooney, K. R. Seddon, J. M. Thompson
Our results indicate that ionic liquid–water micellar systems are
not only suitable reaction media that can overcome issues of water
or ionic liquids as sole solvents. We found that the reaction rate
of Diels–Alder reaction in micellar solutions can be enhanced
compared to that of the reaction in water. Combining the amphi-
philic ionic liquids with a Lewis acid, e.g. InCl3, to form surface
active chloroindate ionic liquids could further increase the reaction
rate. We thus expect that ionic liquid–water micellar systems lead to
a new and probably improved reactivity that cannot be obtained
with traditional solvents or surfactants, and more investigations
towards reactant positioning in the micelles are currently ongoing
in our group.
and K. Wahala, Chem. Commun., 2005, 903; (b) D. C. Apperley,
¨
¨
¨
C. Hardacre, P. Licence, R. W. Murphy, N. V. Plechkova, K. R.
Seddon, G. Srinivasan, M. Swadzba-Kwasny and I. J. Villar-
Garcia, Dalton Trans., 2010, 39, 8679; (c) B. A. D. Neto,
G. Ebeling, R. S. Goncalves, F. C. Gozzo, M. N. Eberlin and
J. Dupont, Synthesis, 2004, 1155.
16 (a) K. Bica, S. Leder and P. Gartner, Curr. Org. Synth., 2011,
´
´
¸
¨
8, 824; (b) K. Bica and P. Gartner, Eur. J. Org. Chem., 2008, 3453;
¨
¨
(c) M. Vasiloiu, P. Gartner and K. Bica, Sci. China: Chem., 2012,
submitted.
17 T. P. Loh, J. Pei and M. Lin, Chem. Commun., 1996, 2315.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 5013–5015 5015