6
ZHANG ET AL.
9. Seo M‐S, Lee A, Kim H. 2, 2′‐Dihydroxybenzil: a stereodynamic
probe for primary amines controlled by steric strain. Org Lett.
2014;16:2950‐2953.
25. Gholami H, Anyika M, Zhang J, Vasileiou C, Borhan B. Host‐
guest assembly of a molecular reporter with chiral cyanohydrins
for assignment of absolute stereochemistry. Chem Eur J.
2016;22:9235‐9239.
10. Akdeniz A, Mosca L, Minami T, Anzenbacher P. Sensing of
enantiomeric excess in chiral carboxylic acids. Chem Commun.
2015;51:5770‐5773.
26. Gholami H, Zhang J, Anyika M, Borhan B. Absolute stereo-
chemical determination of asymmetric sulfoxides via central to
axial induction of chirality. Org Lett. 2017;19:1722‐1725.
11. Zhang P, Wolf C. Sensing of the concentration and enantiomeric
excess of chiral compounds with tropos ligand derived metal
complexes. Chem Commun. 2013;49:7010‐7012.
27. Dale JA, Mosher HS. Nuclear magnetic resonance enantiomer
regents. Configurational correlations via nuclear magnetic
resonance chemical shifts of diastereomeric mandelate, O‐
12. Harada N, Nakanishi K. Circular Dichroic Spectroscopy: Exciton
Coupling in Organic Stereochemistry. Mill Valley, CA: University
Science Books; 1983.
methylmandelate,
and.
alpha.‐methoxy‐.
alpha.‐
trifluoromethylphenylacetate (MTPA) esters. J Am Chem Soc.
1973;95:512‐519.
13. Berova N, Polavarapu PL, Nakanishi K, Woody RW. Compre-
hensive Chiroptical Spectroscopy, Vol. 2: Applications in
Stereochemical Analysis of Synthetic Compounds, Natural
Products, and Biomolecules. Hoboken, NJ: Wiley; 2012.
28. Wenzel TJ, Wilcox JD. Chiral reagents for the determination of
enantiomeric excess and absolute configuration using NMR
spectroscopy. Chirality. 2003;15:256‐270.
29. Seco JM, Quinoá E, Riguera R. The assignment of absolute con-
14. Mason SF. Molecular Optical Activity & Chiral Discrimination.
figuration by NMR. Chem Rev. 2004;104:17‐118.
Cambridge, UK: Cambridge University Press; 1982.
30. Zhang J, Gholami H, Ding X, et al. Computationally aided abso-
lute Stereochemical determination of Enantioenriched amines.
Org Lett. 2017;19:1362‐1365.
15. Huang X, Rickman BH, Borhan B, Berova N, Nakanishi K.
Zinc porphyrin tweezer in host‐guest complexation: determi-
nation of absolute configurations of diamines, amino acids,
and amino alcohols by circular dichroism. J Am Chem Soc.
1998;120:6185‐6186.
31. Yang X, Birman VB. Homobenzotetramisole‐catalyzed kinetic
resolution of α–aryl‐, α–Aryloxy‐, and α–Arylthioalkanoic acids.
Adv Synth Catal. 2009;351:2301
16. Li X, Borhan B. Prompt determination of absolute configuration
for epoxy alcohols via exciton chirality protocol. J Am Chem Soc.
2008;130:16126‐16127.
32. Shiina I, Nakata K, Ono K, Onda Y‐S, Itagaki M. Kinetic resolu-
tion of racemic α‐arylalkanoic acids with achiral alcohols via the
asymmetric esterification using carboxylic anhydrides and acyl‐
transfer catalysts. J Am Chem Soc. 2010;132:11629‐11641.
17. Anyika M, Gholami H, Ashtekar KD, Acho R, Borhan B.
Point‐to‐axial chirality transfer: a new probe for “sensing”
the absolute configurations of monoamines. J Am Chem Soc.
2014;136:550‐553.
33. Yang X, Birman VB. Kinetic resolution of α‐substituted Alkanoic
acids promoted by homobenzotetramisole. Chem Eur J.
2011;17:11296‐11304.
18. You L, Berman JS, Anslyn EV. Dynamic multi‐component cova-
lent assembly for the reversible binding of secondary alcohols
and chirality sensing. Nat Chem. 2011;3:943‐948.
34. Nakata K, Gotoh K, Ono K, Futami K, Shiina I. Kinetic resolu-
tion of racemic 2‐hydroxy‐γ‐butyrolactones by asymmetric
esterification using diphenylacetic acid with pivalic anhydride
and a chiral acyl‐transfer catalyst. Org Lett. 2013;15:1170‐1173.
19. Li X, Burrell CE, Staples RJ, Borhan B. Absolute configuration
for 1, n‐glycols: a nonempirical approach to long‐range stereo-
chemical determination. J Am Chem Soc. 2012;134:9026‐9029.
35. Tartaglia S, Pace F, Scafato P, Rosini C. A new case of induced
helical chirality in a bichromophoric system: absolute configura-
tion of transparent and flexible diols from the analysis of the
electronic circular dichroism spectra of the corresponding di(1‐
naphthyl)ketals. Org Lett. 2008;10:3421‐3424.
20. Proni G, Pescitelli G, Huang X, Quraishi NQ, Nakanishi K,
Berova N. Configurational assignment of α‐chiral carboxylic
acids by complexation to dimeric Zn–porphyrin: host–guest
structure, chiral recognition and circular dichroism. Chem
Commun. 2002;1590‐1591.
21. Yang Q, Olmsted C, Borhan B. Absolute stereochemical determi-
SUPPORTING INFORMATION
nation of chiral carboxylic acids. Org Lett. 2002;4:3423‐3426.
Additional Supporting Information may be found online
in the supporting information tab for this article.
22. Joyce LA, Maynor MS, Dragna JM, et al. A simple method for
the determination of enantiomeric excess and identity of chiral
carboxylic acids. J Am Chem Soc. 2011;133:13746‐13752.
23. Tanasova M, Borhan B. Conformational preference in
Bis(porphyrin) tweezer complexes: a versatile chirality sensor
How to cite this article: Zhang J, Sheng W,
Gholami H, Nehira T, Borhan B. Di(1‐naphthyl)
methanol ester of carboxylic acids for absolute
stereochemical determination. Chirality. 2017;1–6.
for α‐chiral carboxylic acids. Eur
2012;2012(17):3261‐3269.
J
Org Chem.
24. Tanasova M, Anyika M, Borhan B. Sensing remote chirality: ste-
reochemical determination of beta‐, gamma‐, and delta‐chiral
carboxylic acids. Angew Chem Int Ed. 2015;54:4274‐4278.