pubs.acs.org/joc
Domino Heck-Aza-Michael Reactions: Efficient
Access to 1-Substituted Tetrahydro-β-carbolines
Daniel L. Priebbenow,† Luke C. Henderson,†
Frederick M. Pfeffer,*,† and Scott G. Stewart*,‡
†School of Life and Environmental Science, Deakin
University, Geelong 3217, Victoria, Australia, and ‡School of
Biomedical, Biomolecular and Chemical Sciences, University
of Western Australia, Crawley 6009, Western Australia,
Australia
fred.pfeffer@deakin.edu.au; sgs@cyllene.uwa.edu.au
Received December 20, 2009
FIGURE 1. Natural products (1-3) containing the tetrahydro-β-
carboline heterocyclic core.
Domino reactions are an attractive proposition for the
modern synthetic chemist, generating a high level of mole-
cular complexity in one efficient step.4 A domino reaction is
defined as “the execution of two or more bond-forming
transformations under identical reaction conditions, in
which the latter transformations take place at the function-
alities formed by the preceding transformation.”4,5
These reactions are appealing to industry and research
laboratories because of their potential to minimize the use of
solvents, reagents, time, and energy.4 The more conceivable
domino reactions are those where all transformations occur
under similar reaction conditions, for example, where each of
the steps are palladium-catalyzed.5,6 The range of single-step
reactions involving palladium catalysis has grown to the
extent where palladium-mediated reactions are common-
place in most synthetic laboratories. Consequently, the
number of palladium-mediated domino reactions has also
increased over the past decade.7 In spite of this increase,
domino Heck-Michael methodology remains relatively
underutilized, with limited examples in the literature.8 Of
those reported, only one details a domino Heck-aza-Michael
process, used in the synthesis of benzo-fused sultams.8c
Due to their biological relevance, it is important that
molecularly diverse THβCs are prepared containing multiple
sites for further functionalization. Traditionally, C1-substi-
tuted THβCs are accessed through the acid-catalyzed Pictet-
Spengler reaction between tryptamine and an appropriate
aldehyde.9 Alternatively, a four-step process involving a
A simple and efficient palladium-catalyzed domino reac-
tion for the synthesis of a series of C1-substituted tetra-
hydro-β-carbolines is described. This domino process
involves a Heck reaction at the indole 2-position of a
halogenated tryptamine precursor, followed by intramo-
lecular aza-Michael addition.
Tetrahydro-β-carbolines (THβCs or tryptolines) substi-
tuted at the 1-position are central to a number of pharma-
ceutical targets with potential for the treatment of medical
conditions including breast cancer, type-2 diabetes, and
bacterial infections.1 This ring system is prevalent in several
more structurally complex natural products, including the
secologanin-type terpenoid indole alkaloid ajmalicine (1)
(Figure 1) and the antihypertensive agent reserpine (2).1a,2
Biosynthetically, attaching a 3-(l-Δ0-pyrroliniumyl)propanal
to this carboline ring system accesses the alkaloid elaeo-
carpidine (3) containing an additional indolizidine ring
fragment.3
(4) Tietze, L. F. Chem. Rev. 1996, 96, 115–136.
(5) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic
Synthesis; 1st ed.; Wiley-VCH: Weinheim, Germany, 2006.
(6) (a) Poli, G.; Giambastiani, G. J. Org. Chem. 2002, 67, 9456–9459. (b)
Beccalli, E. M.; Broggini, G.; Martinelli, M.; Masiocchi, N.; Sottocornola, S.
Org. Lett. 2006, 8, 4521–4524.
(1) (a) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14,
479–500. (b) Wang, H.; Usui, T.; Osada, H.; Ganesan, A. J. Med. Chem.
2000, 43, 1577–1585. (c) Jenkins, P. R.; Wilson, J.; Emmerson, D.; Garcia,
M. D.; Smith, M. R.; Gray, S. J.; Britton, R. G.; Mahale, S.; Chaudhuri, B.
Bioorg. Med. Chem. 2008, 16, 7728–7739. (d) Gul, W.; Hamann, M. T. Life
Sci. 2005, 78, 442–453. (e) Li, W. L.; Zheng, H. C.; Bukuru, J.; De Kimpe, N.
J. Ethnopharmacol. 2004, 92, 1–21.
(7) (a) Poli, G.; Giambastiani, G.; Pacini, B. Tetrahedron Lett. 2001, 42,
5179–5182. (b) Jeong, N.; Seo, S. D.; Shin, J. Y. J. Am. Chem. Soc. 2000, 122,
10220–10221. (c) Gruber, M.; Chouzier, S.; Koehler, K.; Djakovitch, L. Appl.
Catal., A 2004, 265, 161–169. (d) Sugihara, T.; Coperet, C.; Owczarczyk, Z.;
Harring, L. S.; Negishi, E. J. Am. Chem. Soc. 1994, 116, 7923–7924. (e) Tietze,
L. F.; Redert, T.; Bell, H. P.; Hellkamp, S.; Levy, L. M. Chem.;Eur. J. 2008,
14, 2527–2535.
(2) (a) Boumendjel, A.; Nuzillard, J.-M.; Massiot, G. Tetrahedron Lett.
€ꢀ
1999, 40, 9033–9036. (b) Diker, K.; El Biach, K.; Doe de Maindreville, M.;
(8) (a) Dyker, G.; Grundt, P. Tetrahedron Lett. 1996, 37, 619–622. (b)
Wahab Khan, M.; Masud Reza, A. F. G. Tetrahedron 2005, 61, 11204–
11210. (c) Rolfe, A.; Young, K.; Hanson, P. R. Eur. J. Org. Chem. 2008,
5254–5262.
(9) (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797–1842. (b) Youn,
S. W. Org. Prep. Proced. Int. 2006, 38, 505–591.
ꢀ
Levy, J. J. Nat. Prod. 1997, 60, 791–793. (c) Singh, K.; Deb, P. K.;
Venugopalan, P. Terahedron 2001, 57, 7939–7949.
(3) Gribble, G. W.; Switzer, F. L.; Soll, R. M. J. Org. Chem. 1988, 53,
3164–3170.
DOI: 10.1021/jo902652h
r
Published on Web 02/04/2010
J. Org. Chem. 2010, 75, 1787–1790 1787
2010 American Chemical Society