188 JOURNAL OF CHEMICAL RESEARCH 2014
We are grateful for the financial support of this research by
the National Natural Science Foundation of China (Grant No.
21106090)andPostdoctoralFoundationofChina(2012M511352)
and Foundation of Low Carbon Fatty Amine Engineering
Research Center of Zhejiang Province (2012E10033).
Experimental
All chemicals were used as supplied without further purification
unless otherwise specified. Melting points were taken on a Gallen-
kamp melting point apparatus and were uncorrected. 1H and 13C NMR
spectra were recorded on a Bruker AM-400 MHz spectrometer.
HRMS values were measured by a JEOL JMS-SX or JEOL JMS-SX
102A spectrometer. Flash column chromatography was performed on
silica gel (200–300 mesh) (Qingdao Haiyang Chemical Co. Ltd, China)
and TLC measurements were performed on silica gel GF254 plates
(Qingdao Haiyang Chemical Co. Ltd, P.R. China).
Received 25 October 2013; accepted 27 January 2014
Paper 1302250 doi: 10.3184/174751914X13926483381319
Published online: 7 March 2014
Synthesis of DES; general procedure
References
Choline chloride (10 g, 71.4 mmol) and urea (8.6 g, 142.8 mmol)
were heated with stirring at 80 °C until a clear solution was obtained.
After cooling to room temperature, the DES could be used for the
Knoevenagel condensation reactions without any purification.
1
2
3
G. Jones, Organic reactions. Wiley, New York, 1967; Vol. 15, p. 204.
F. Freeman, Chem. Rev., 1980, 80, 329.
K. Ebitani, K. Motokura, K. Mori, T. Mizugaki and K. Kaneda, J. Org.
Chem., 2006, 71, 5440.
4
5
6
L.F. Tietze and N. Rackelmann, Pure Appl. Chem., 2004, 76, 1967.
G. Kwak and M. Fujiki, Macromolecules, 2004, 37, 2021.
F. Liang, Y.J. Pu, T. Kurata, J. Kido and H. Nishide, Polymer, 2005, 46,
3767.
J.W. Rumer, M. Levick, S.Y. Dai, S. Rossbauer, Z.G. Huang, L. Biniek,
T.D. Anthopoulos, J.R. Durrant, D.J. Procter and I. McCulloch, Chem.
Commun., 2013, 49, 4465.
J.W. Rumer, S.Y. Dai, M. Levick, L. Biniek, D.J. Procter and I. McCulloch,
J. Polym. Sci. Pol. Chem., 2013, 51, 1285.
J.A. Cabello, J.M. Campelo, A. Garcia, D. Luna and J.M. Marinas, J. Org.
Chem., 1984, 49, 5195.
Knoevenagel condensation; typical procedure
Benzaldehyde (1 mmol) and ethyl cyanoacetate (1 mmol) were mixed
together in the presence of 20 mol% DES and then stirred at room
temperature. Upon completion of the reaction (monitored by TLC,
solvent system: ethyl acetate and petroleum ether), water (2 mL) was
added to the mixture. The product was filtered and the solid, was dried
in vacuo at 60 °C for 10 h. This gave the desired product in high purity
that did not need further purification. The deep eutectic solvent was
recovered by removing the aqueous layer using a rotary evaporator.
All the products had the E-geometry exclusively and no Z-geometrical
isomers were detected in the NMR.
2-(3-Chlorophenyl)-3-phenylacrylonitrile (entry 3, Table 3): White
solid; m.p. 94–96 °C; 1H NMR (400 MHz, CDCl3): δ 7.91 (m, 2H), 7.67
(s, 1H), 7.57 (m, 2H), 7.50 (m, 3H), 7.40 (d, 2H, J=5.6 Hz); 13C NMR
(100 MHz, CDCl3): δ 143.6, 136.5, 135.4, 133.5, 131.2, 130.5, 129.7,
129.5, 129.3, 126.2, 124.5, 117.8, 110.5; MS m/z=239.1. Anal. calcd for
C15H12ClN: C, 74.53; H, 5.00; Cl, 14.67; N, 5.79; found: C, 74.35; H, 5.12;
Cl, 14.93; N, 5.50%.
7
8
9
10 R.P. Shanthan and R.V. Venkatratnam, Tetrahedron Lett., 1991, 32, 5821.
11 P. Leelavathi and S.R. Kumar, J. Mol. Catal. A, 2005, 240, 99.
12 G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo, P. Galzerano, P. Melchiorre
and L. Sambri, Tetrahedron Lett., 2008, 49, 2555.
13 N. Kan-nari, S. Okamura, S. Fujita, J. Ozaki and M. Araib, Adv. Synth.
Catal., 2010, 352, 1476.
14 V.S.R.R. Pullabhotla, R. Ateeq and S.B. Jonnalagadda, Catal. Commun.,
2009, 10, 365.
15 B. Tamami and A. Fadavi, Catal. Commun., 2005, 6, 747.
16 B.C. Ranu and R. Jana, Eur. J. Org. Chem., 2006, 16, 3767.
17 X. Xin, X. Guo, H.F. Duan, Y.J. Lin and H. Sun, Catal. Commun., 2007, 8,
115.
2-(3-Chlorophenyl)-3-(4-methoxyphenyl)acrylonitrile (entry 4,
1
Table 3): White solid; m.p. 97–98 °C; H NMR (400 MHz, CDCl3): δ
18 Y.O. Sharma and M.S. Degani, J. Mol. Catal. A Chem., 2007, 277, 215.
19 C.F. David, M.L. Amanda and W.M. Doug, Tetrahedron Lett., 2006, 47,
1699.
3.88(s, 3H), 6.99(d, 2H, J=6.8 Hz), 7.33–7.36(m, 2H), 7.47(s, 1H),
7.54(s, 1H), 7.56(s, 1H), 7.90(d, 2H, J=6.8 Hz); 13C NMR (100 MHz,
CDCl3): δ 55.6, 113.8, 117.8, 123.5, 126.4, 128.4, 129.6, 132.6, 133.5,
134.7, 146.8, 160.5; MS m/z=269.1. Anal. calcd for C16H12ClNO: C,
71.25; H, 4.48; Cl, 13.14; N, 5.19; O, 5.94; found: C, 71.21; H, 4.51; Cl,
13.13; N, 5.18; O, 5.97%.
2-(Benzo[d]thiazol-2-yl)-3-(2-chlorophenyl)acrylonitrile (entry 3,
Table 4): Yellow solid; m.p. 241–242 °C; 1H NMR (400 MHz, CDCl3):
δ 8.61 (s, 1H), 8.28 (m, 1H), 8.14 (d, 1H, J=6.4 Hz), 7.93 (d, 1H,
J=6.4 Hz), 7.50 (m, 5H); 13C NMR (100 MHz, CDCl3): δ 162.5, 154.3,
153.8, 132.2, 131.6, 128.8, 128.6, 127.5, 126.5, 124.6, 124.3, 122.5,
116.8, 108.4; MS m/z=296.1. Anal. calcd for C16H9ClN2S: C, 64.75; H,
3.06; Cl, 11.95; N, 9.44; S, 10.80; found: C, 65.28; H, 3.25; Cl, 11.83; N,
9.13; S, 10.51%.
2-(1H-Benzo[d]imidazol-2-yl)-3-(thiophen-2-yl)acrylonitrile (entry
8, Table 4): Yellow solid; m.p. 203–205 °C; 1H NMR (400 MHz,
CDCl3): δ 9.65(s, 1H), 7.88(s, 1H), 7.77(s, 1H), 7.68(m, 2H), 7.51(m,
1H), 7.32(m, 2H), 7.18(m, 1H); 13C NMR (100 MHz, CDCl3): δ 142.6,
141.9, 139.6, 138.9, 136.6, 132.5, 130.6, 126.5, 117.8, 114.6, 112.5; MS
m/z=251.1. Anal. calcd for C14H9N3S: C, 66.91; H, 3.61; N, 16.72; S,
12.76; found: C, 66.83; H, 3.65; N, 16.74; S, 12.78%.
20 Y. Hu, J. Chen, Z.G. Le and Q.G. Zheng, Synth. Commun., 2005, 35, 739.
21 C. Paun, J. Barklie, P. Goodrich, H.Q.N. Gunaratne, A. McKeown, V.I.
Parvulescu and C. Hardacre, J. Mol. Catal. A Chem., 2007, 269, 64.
22 S.A. Forsyth, U. Frohlich, P. Goodrich, H.Q.N. Gunaratne, C. Hardacre, A.
McKeown and K.R. Seddon, New J. Chem., 2010, 34, 723.
23 W.W. Miao and T.H. Chan, Acc. Chem. Res., 2006, 39, 897.
24 A.G. Ying, H.D. Liang, R.H. Zheng, C.H. Ge, H.J. Jiang and C.L. Wu, Res.
Chem. Intermed., 2011, 37, 579.
25 A.G. Ying, L. Liu, G.F. Wu, X.Z. Chen, W.D. Ye, J.H. Chen and K.Y.
Zhang, Chem. Res. Chin. Univ., 2009, 25, 876.
26 A.G. Ying, L.M. Wang, L.L. Wang, X.Z. Chen and W.D. Ye, J. Chem. Res.,
2010, 34, 30.
27 A.G. Ying, C.L. Wu and G.F. He, Asian J. Chem., 2012, 24, 653.
28 A. Romero, A. Santos, J. Tojo and A. Rodriguez, J. Hazard. Mater., 2008,
151, 268.
29 N.V. Plechkova and K.R. Seddon, Chem. Soc. Rev., 2008, 37, 123.
30 E. Durand, J. Lecomte and P. Villeneuve, Eur. J. Lipid Sci. Technol., 2013,
115, 379.
31 Y.T. Dai, J. Spronsen, G.J. Witkamp, R. Verpoorte and Y.H. Choi, Analy.
Chim. Acta, 2013, 766, 61.
32 M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef,
M.E.S. Mirghani and O.K. Saheed, Chemosphere, 2013, 90, 2193.
JCR1302250_FINAL.indd 188
04/03/2014 10:11:36