1296
J. Velcicky et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1293–1297
MK2 kinase inhibitor 14e. This compound showed potent inhibi-
tion of MK2 activity and reasonable cellular activity (inhibition of
TNF and phoshorylation of hsp27). In addition, the compound
was effective in vivo for inhibition of LPS-induced TNF release
a
a
in mice. Interestingly, a novel binding pocket behind the hinge re-
gion which was induced by the ligand was discovered which seems
to improve binding to MK2 and also kinase selectivity.
Acknowledgments
We are very grateful to our colleagues from the NIBR kinase
platform for providing us with in vitro kinase and selectivity data
as well as the NIBR Prep Labs for the syntheses of valuable
intermediates.
References and notes
1. (a) Feldmann, M.; Maini, R. N. Nat. Med. 2003, 9, 1245; (b) Nikolaus, S.;
Schreiber, S. Der Internist 2008, 49, 947; (c) Valesini, G.; Iannuccelli, C.;
Marocchi, E.; Pascoli, L.; Scalzi, V.; Di Franco, M. Autoimmunity Rev. 2007, 7, 35;
(d) Mousa, S. A.; Goncharuk, O.; Miller, D. Expert Opin. Biol. Ther. 2007, 7, 617;
(e) Takeuchi, T.; Amano, K.; Kameda, H.; Abe, T. Allergol. Int. 2005, 54, 191.
2. (a) Schindler, J. F.; Monahan, J. B.; Smith, W. G. J. Dent. Res. 2007, 86, 800; (b)
Peifer, C.; Wagner, G.; Laufer, S. Curr. Top. Med. Chem. 2006, 6, 113; (c)
Dominguez, C.; Powers, D. A.; Tamayo, N. Curr. Opin. Drug Disc. Dev. 2005, 8,
421.
3. (a) Kotlyarov, A.; Neininger, A.; Schubert, C.; Eckert, R.; Birchmeier, C.; Volk, H.-
D.; Gaestel, M. Nat. Cell Biol. 1999, 1, 94; (b) Kotlyarov, A.; Yannoni, Y.; Fritz, S.;
Laaß, K.; Telliez, J.-B.; Pitman, D.; Lin, L.-L.; Gaestel, M. Mol. Cell. Biol. 2002, 22,
4827; (c) Neininger, A.; Kontoyiannis, D.; Kotlyarov, A.; Winzen, R.; Eckert, R.;
Volk, H.-D.; Holtmann, H.; Kollias, G.; Gaestel, M. J. Biol. Chem. 2002, 277, 3065;
(d) Duraisamy, S.; Bajpai, M.; Bughani, U.; Dastidar, S. G.; Ray, A.; Chopra, P.
Expert Opin. Ther. Targets 2008, 12, 921.
4. Hegen, M.; Gaestel, M.; Nickerson-Nutter, C. L.; Lin, L. L.; Telliez, J. B. J. Immunol.
2006, 177, 1913.
Figure 2. Crystal structure of 14e bound to MK2.14
5. (a) Schlapbach, A.; Feifel, R.; Hawtin, S.; Heng, R.; Koch, G.; Moebitz, H.; Revesz,
L.; Scheufler, C.; Velcicky, J.; Waelchli, R.; Huppertz, C. Bioorg. Med. Chem. Lett.
2008, 18, 6142; (b) Anderson, D. R.; Hegde, S.; Reinhard, E.; Gomez, L.; Vernier,
W. F.; Lee, L.; Liu, S.; Sambandam, A.; Snider, P. A.; Masih, L. Bioorg. Med. Chem.
Lett. 2005, 15, 1587; (c) Wu, J.-P.; Wang, J.; Abeywardane, A.; Andersen, D.;
Emmanuel, M.; Gautschi, E.; Goldberg, D. R.; Kashem, M. A.; Lukas, S.; Mao, W.;
Martin, L.; Morwick, T.; Moss, N.; Pargellis, C.; Patel, U. R.; Patnaude, L.; Peet, G.
W.; Skow, D.; Snow, R. J.; Ward, Y.; Werneburg, B.; White, A. Bioorg. Med. Chem.
Lett. 2007, 17, 4664; (d) Trujillo, J. I.; Meyers, M. J.; Anderson, D. R.; Hegde, S.;
Mahoney, M. W.; Vernier, W. F.; Buchler, I. P.; Wu, K. K.; Yang, S.; Hartmann, S. J.;
Reitz, D. B. Bioorg. Med. Chem. Lett. 2007, 17, 4657; (e) Goldberg, D. R.; Choi, Y.;
Cogan, D.; Corson, M.; DeLeon, R.; Gao, A.; Gruenbaum, L.; Hao, M. H.; Joseph, D.;
Kashem, M. A.; Miller, C.; Moss, N.; Netherton, M. R.; Pargellis, C. P.; Pelletier, J.;
Sellati, R.; Skow, D.; Torcellini, C.; Tseng, Y.-C.; Wang, J.; Wasti, R.; Werneburg,
B.; Wu, J. P.; Xiong, Z. Bioorg. Med. Chem. Lett. 2008, 18, 938; (f) Xiong, Z.; Gao, D.
A.; Cogan, D. A.; Goldberg, D. R.; Hao, M.-H.; Moss, N.; Pack, E.; Pargellis, C.;
Skow, D.; Trieselmann, T.; Werneburg, B.; White, A. Bioorg. Med. Chem. Lett.
2008, 18, 1994; (g) Anderson, D. R.; Meyers, M. J.; Vernier, W. F.; Mahoney, M.
W.; Kurumbail, R. G.; Caspers, N.; Poda, G. I.; Schindler, J. F.; Reitz, D. B.; Mourey,
R. J. J. Med. Chem. 2007, 50, 2647; (h) Lin, S.; Lombardo, M.; Malkani, S.; Hale, J. J.;
Mills, S. G.; Chapman, K.; Thompson, J. E.; Zhang, W. X.; Wang, R.; Cubbon, R. M.;
O’Neill, E. A.; Luell, S.; Carballo-Jane, E.; Yang, L. Bioorg. Med. Chem. Lett. 2009, 19,
3238; i Anderson, D. R.; Meyers, M. J.; Kurumbail, R. G.; Caspers, N.; Poda, G. I.;
Long, S. A.; Pierce, B. S.; Mahoney, M. W.; Mourey, R. J. Bioorg. Med. Chem. Lett.
2009, 19, 4878; j Anderson, D. R.; Meyers, M. J.; Kurumbail, R. G.; Caspers, N.;
Poda, G. I.; Long, S. A.; Pierce, B. S.; Mahoney, M. W.; Mourey, R. J.; Parikh, M. D.
Bioorg. Med. Chem. Lett. 2009, 19, 4882.
interacting with backbone of E139 and L141, and the lactame por-
tion makes a dual hydrogen bond interaction with residues of con-
served K93 and D207. Surprisingly, an unusual binding of the
indole-ring to a new, ligand induced hydrophobic pocket behind
MK2-hinge region was observed. The indole-NH group forms an
additional hydrogen bond interaction with the backbone carbonyl
of F90, highlighting the importance of an hydrogen donor at this
position. The induced-fit of MK2 with compound 14e most proba-
bly favors the observed high selectivity (IC50 >10
itor against 29 different kinases in our in house kinase panel
including CDK2, JNK1, JNK2 and p38 as well as its low toxicity
in THP-1 cell proliferation assay (IC50 >20 M).
In addition, compound 14e also inhibited LPS-induced TNF
lease in mice.15 Although good inhibition (68%) was observed at
100 mg/kg po dosage (blood levels of 17.4 M), no inhibition was
observed at a lower 30 mg/kg po dose. This was not surprising as
the blood levels at the lower dose (1.7 M) did not reach levels ex-
lM) of this inhib-
a
l
a
re-
l
l
pected to exert an effect as demonstrated using human PBMCs.
One possible explanation for the lack of linearity in the dose/blood
levels could be due to the low solubility of this compound (<2 mg/L
at pH 1, 4 and 6.8). In an additional study, a concentration depen-
dant effect was observed when TNFa levels were measured at dif-
ferent time points after compound dosing. Thus, dosing the
6. (a) Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. Angew. Chem., Int. Ed. 1999,
38, 2894; (b) Schneider, G.; Schneider, P.; Renner, S. QSAR Comb. Sci. 2006, 25,
1162; (c) Böhm, H.-J.; Flohr, A.; Stahl, M. Drug Discovery Today 2004, 1, 217; see
also: (d) Mauser, H.; Guba, W. Curr. Opin. Drug Disc. Dev. 2008, 11, 365; (e) Zhao,
H. Drug Discovery Today 2007, 12, 149.
7. (a) Silvestri, R.; Cascio, M. G.; La Regina, G.; Piscitelli, F.; Lavecchia, A.; Brizzi, A.;
Pasquini, S.; Botta, M.; Novellino, E.; Di Marzo, V.; Corelli, F. J. Med. Chem. 2008,
51, 1560; (b) Harvey, A. L.; MacTavish, J.; Mullins, S. J.; Proctor, G. R. J. Chem.
Res., Synop. 1997, 11, 420.
compound 1 h before LPS challenge yields in 66% inhibition at
14.1
6.8
l
M
blood exposure; 4 h before LPS challenge (23% at
lM) and 6 h (67% at 25.8 M). This study also indicates a sec-
l
8. Iida, T.; Satoh, H.; Maeda, K.; Yamamoto, Y.; Asakawa, K.; Sawada, N.; Wada, T.;
Kadowaki, C.; Itoh, T.; Mase, T.; Weissman, S. A.; Tschaen, D.; Krska, S.; Volante,
R. P. J. Org. Chem. 2005, 70, 9222.
ond absorption peak at 4–6 h, which may be caused by the low sol-
ubility of this compound. Therefore, we are currently further
searching for more potent and more soluble analogs of 14e.
In a summary, we have discovered and profiled novel 3-amino-
pyrazole MK2-inhibitors. This new class was revealed by scaffold
hopping strategy and could be developed to obtain a selective
9.
a
c
-lactame-bromide: Clayton, J.; Ma, F.; Van Wagenen, B.; Ukkiramapandian,
R.; Egle, I.; Empfield, J.; Isaac, M.; Slassi, A.; Steelman, G.; Urbanek, R.; Walsh, S.
WO 2006/020879.; d-lactame-bromide: Coppola, G. M.; Damon, R. E.;
Kukkola, P. J.; Stanton, J. L. WO 2004/065351.; -lactame-triflates were
obtained by triflation (11c: Tf2O, Et3N, DMAP (cat.), CH2Cl2, À78 °C to 23 °C,
b
x