Table 2 Scope of the enantioselective carbonylation of cyclic 1,3-
increasing range of functional groups and generating products
useful in organic synthesis.
ditriflatesa
Acknowledgements
This work was supported by the EPSRC and F. Hoffmann-La
Roche Ltd.
entry
product
monoester yield b(ee)c
diester yieldb
Notes and references
1 Reviews: (a) O. Riant and J. Hannedouche, Org. Biomol. Chem., 2007,
5, 873; (b) A. Steven and L. E. Overman, Angew. Chem., Int. Ed., 2007,
46, 5488; (c) P. G. Cozzi, R. Hilgraf and N. Zimmermann, Eur. J. Org.
Chem., 2007, 5969; (d) J. Chrsitoffers and A. Mann, Angew. Chem., Int.
Ed., 2001, 40, 4591.
2 Selected recent examples of the catalytic enantioselective synthesis of
quaternary all carbon centers, see: (a) T. Hashimoto, K. Sakata and K.
Maruoka, Angew. Chem., Int. Ed., 2009, 48, 5014; (b) S. R. Levine, M.
R. Krout and B. M. Stoltz, Org. Lett., 2009, 11, 289; (c) T. L. May, M.
K. Brown and A. H. Hoveyda, Angew. Chem., Int. Ed., 2008, 47, 7358;
(d) A. G. Doyle and E. N. Jacobsen, Angew. Chem., Int. Ed., 2007, 46,
3701; (e) S. Mukherjee and B. List, J. Am. Chem. Soc., 2007, 129, 11336.
3 (a) J. Tsuji, Palladium Reagents and Catalysts: New Perspectives for the
21st Century, Wiley, Chichester, 2004; (b) Handbook of Organopalla-
dium Chemistry for Organic Synthesis, (Eds, E. Negishi, A. de Meijere),
Wiley, New York, 2002.
1
2
3
R1 = Et
34% (94%)
48% (90%)
14% (—)
47%
18%
<5%
i
R1 = Pr
t
R1 = Bu
4
5
6
7
8
R = OMe
R = CN
R = CF3
R = F
34% (94%)
44% (89%)
40% (85%)
35% (95%)
36% (80%)
47%
32%
15%
36%
28%
4 For an excellent review on enantioselective palladium-catalyzed trans-
formations, see: L. F. Tietze, H. Ila and H. P. Bell, Chem. Rev., 2004,
104, 3453.
5 For reviews on enantioselective desymmetrization, see: (a) M. C. Willis,
J. Chem. Soc., Perkin Trans. 1, 1999, 1765; (b) T. Rovis, in Recent
Advances in Catalytic Asymmetric Desymmetrization Reactions, in
New Frontiers in Asymmetric Catalysis, (Eds, K. Mikami, M. Lautens),
Wiley, New York, 2007, pp. 275–312.
6 For alternative examples of palladium catalyzed enantioselective
desymmetrizations, see: (a) E. P. Ku¨ndig, P. D. Chaudhuri, D. House
and G. Bernardinelli, Angew. Chem., Int. Ed., 2006, 45, 1092; (b) A.
B. Machotta, B. F. Straub and M. Oestreich, J. Am. Chem. Soc., 2007,
129, 13455; (c) B. M. Trost, J. Richardson and K. Yong, J. Am. Chem.
Soc., 2006, 128, 2540; (d) E. A. Bercot and T. Rovis, J. Am. Chem. Soc.,
2004, 126, 10248; (e) B. M. Trost and D. E. Patterson, Chem.–Eur. J.,
1999, 5, 3279; (f) M. Shibasaki and E. M. Vogl, J. Organomet. Chem.,
1999, 576, 1–15; (g) T. Hayashi, S. Niizuma, T. Kamikawa, N. Suzuki
and Y. Uozumi, J. Am. Chem. Soc., 1995, 117, 9101.
9
44% (93%)
41% (74%)
33%
20%
10
7 M. C. Willis, L. H. W. Powell, C. K. Claverie and S. J. Watson, Angew.
Chem., Int. Ed., 2004, 43, 1249.
8 A. Brennfu¨hrer, H. Neumann and M. Beller, Angew. Chem., Int. Ed.,
2009, 48, 4114.
9 (a) S. C. A. Nefkens, M. Sperrle and G. Consiglio, Angew. Chem., Int.
Ed. Engl., 1993, 32, 1719; (b) T. Hayashi, J. Tang and K. Kato, Org.
Lett., 1999, 1, 1487; (c) T. Aratani, K. Tahara, S. Takeuchi, Y. Ukaji
and K. Inomata, Chem. Lett., 2007, 36, 1328; (d) T. Kusakabe, K. Kato,
S. Takaishi, S. Yamamura, T. Mochida, H. Akita, T. A. Peganova, N.
V. Vologdin and O. V. Gusev, Tetrahedron, 2008, 64, 319.
10 (a) T. Suzuki, Y. Uozumi and M. Shibasaki, J. Chem. Soc., Chem.
Commun., 1991, 1593; (b) B. Gotov and H.-G. Schmalz, Org. Lett.,
2001, 3, 1753.
11 The 5-membered ditriflates were unstable under the described carbony-
lation conditions and delivered dienone byproducts. The majority of
the 6-membered ditriflates were prepared according to: M. C. Willis
and C. K. Claverie, Tetrahedron Lett., 2001, 42, 5105.
11
12
R = Pr
R = Et
32% (87%)
31% (61%)
38%
38%
a Reaction conditions; ditriflate in 2 : 1 MeOH : NEt3 (0.1 M), Pd(OAc)2 (10
mol%), ligand 15 (10 mol%). The absolute configurations of the products
have not been established, and are arbitrarily shown above. b Isolated yields.
c Determined by chiral HPLC.
12 Y. Uozumi and T. Hayashi, J. Am. Chem. Soc., 1991, 113, 9887.
13 The yield of monoester 11 recorded in Fig. 1 is less than the values
shown in Table 1. This is attributed to sampling of the reaction needed
for aliquot removal.
ability to selectively access a common vinyl palladium intermediate
should allow further reactions to be developed, thus delivering an
760 | Org. Biomol. Chem., 2010, 8, 758–760
This journal is
The Royal Society of Chemistry 2010
©