3
Synlett 2013, 24, 607-610; (c) Nobuta, T. Fujiya, A.; Hirashima,
bond along with dibromomethyl carbene. The dibromomethyl
carbene produces hydrogen bromide in the presence of solvent
and oxygen. Then, the hydrogen bromide is reoxidized to
bromine. In this reaction, we suppose that bromine atom is
installed to the arene by aromatic electrophilic substitution
reaction. On the other hand, the minor path is illustrated below in
scheme 2. The excited AQN, which is formed by absorption of
visible light, causes SET and produces radical cation species.15
This radical species react with bromine radical and the product is
aromatized again via deprotonation and AQN hydroxyl radical is
formed. The generated AQN hydroxyl radical are reoxidized
under the photooxidative condition and the catalytic cycle is
established.
S.; Tada, N.; Miura, T.; Itoh, A. Tetrahedron Lett. 2012, 53, 5306-
5308; (d) Tada, N.; Ban, K.; Nobuta, T.; Hirashima, S.; Miura, T.;
Itoh, A. Synlett 10, 1381-1384; (e) Nobuta, T.; Tada, N.; Hattori,
K.; Hirashima, S.; Miura, T.; Itoh, A. Tetrahedron Lett. 2011, 52,
875-877; (f) Tada, N.; Ban, K.; Yoshida, M.; Hirashima, S.;
Miura, T.; Itoh, A. Tetrahedron Lett. 2010, 51, 6098-6100; (g)
Hirashima, S.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Org. Lett.
2010, 12, 3645-3647; (h) Tada, N.; Ban, K.; Hirashima, S.; Miura,
T.; Itoh, A. Org. Biomol. Chem. 2010, 8, 4701-4704; (i) Nobuta,
T.; Hirashima, S.; Tada, N.; Miura, T.; Itoh, A. Tetrahedron Lett.
2010, 51, 4576-4578; (j) Nobuta, T.; Hirashima, S.; Tada, N.;
Miura, T.; Itoh, A. Synlett 15, 2335-2339.
13. Hunter, W. H.; Edgar, D. E. J. Am. Chem. Soc. 1932, 54, 2025-
2028.
14. a) Posner, G. H.; Canella, K. A. J. Am. Chem. Soc. 1985, 107,
2571-2573; b) Friedmann, C.; Braise, S. Synlett 2010, 5, 774-776.
15. Cui, L.; Furuhashi, S.; Tachikawa. Y.; Tada, N.; Miura, T.; Itoh,
A.; Tetrahedron Lett. 2013, 54, 162-165.
In conclusion, we developed the aerobic photooxidative
bromination of aromatic compounds using CBr4 in the presence
of the catalytic amounts of AQN-2-CO2H under photo-irradiation
from fluorescent lamp.
16. Typical procedure: A pyrex test tube containing solid of 1,3,5-
Trimethoxybenzene (1a, 0.3 mmol), carbon tetrabromide
(0.075 mmol), AQN-2-CO2H (0.03 mmol) and dry EtOH (5
mL) was irradiated for 20 h at room temperature with stirring
by a 21 W fluorescent lamp under air. The reaction mixture
was concentrated in vacuo, quenched with aq. Na2S2O3 and
extracted with EtOAc. The organic layer was dried over
MgSO4 and concentrated in vacuo. Purification of the residue
by flash chromatography on silica gel (hexane : ethyl acetate =
6 : 1) provided 2-bromo-1,3,5-trimethoxybenzene (2a) (66.8
mg, 90%, ) as a white solid.
Acknowledgment
This work was supported by Grant-in-Aid for Young
Scientists (B)(No. 24790015) from the Japan Society for
the Promotion of Science (JSPS).
References and notes
1.
a) Metal-Catalyzed Cross-Coupling Reactions; Meijere, de. A.;
Diederich, F., Eds; Wiley-VCH, Weinheim, 2004; b) Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi, E.;
Meijere de. A., Eds.; Wiley, New York, 2002.
2.
Imming, P.; Imhof, I.; Zentgraf, M. Syn. Commun. 2001, 31, 3721-
3727.
3.
4.
Carté, B.; Faulkner, D. J. J. Org. Chem. 1983, 48, 2314-2318.
a) Hodgson, H. H. Chem. Rev. 1947, 40, 251-277; b) Galli, C.
Chem. Rev. 1988, 88, 765-792.
5.
a) Thiebes, C. G.; Surya Prakash, K. N.; Petasis, A.; Olah, G. A.
Synlett 1998, 141-142; b) Qiu, D.; Mo, F.; Zheng, Z.; Zhang, Y.;
Wang, J. Org. Lett. 2010, 12, 5474-5477; c) Kabalka, G. W.;
Mereddy, A. R. Organometallics 2004, 23, 4519-4521; d)
Thompson, A. L. S.; Kabalka, G. W.; Akula, M. R.; Huffman, J.
W. Synthesis 2005, 547-550.
6.
7.
8.
a) Imazaki, Y.; Shirakawa, E.; Ueno, R.; Hayashi, T. J. Am. Chem.
Soc. 2012, 134, 14760-14761; b) Pan, J.; Wang, X.; Zhang, Y.;
Buchwald, S. L. Org. Lett. 2011, 13, 4974-4976.
Comprehensive Organic Transformations: A Guide to Functional
Group Preparations; Larock, R. C., Ed; Wiley-VCH, New York,
1999, 2nd ed. pp 619.
a) Naresh, N.; Kumar, M. A.; Reddy, M. M.; Swamy, P.;
Nanubolu, J. B.; Narender, N. Synthesis 2013, 45, 1497-1504; b)
Kumar, M. A.; Rohitha, C. N.; Kulkarni, S. J.; Narender, N.
Synthesis 2010, 1629-1632; c) Zhou, Z.; He, X. Synthesis 2011,
207-209; d) Yonehara, K.; Kamata, K.; Yamaguchi, K.; Mizuno,
N. Chem. Commun. 2011, 47, 1692-1694; e) Bennett, S. M.; Tang,
Y.; McMastcr, D.; Bright, F. V.; Detty, M. R. J. Org. Chem. 2008,
73, 6849-6852; f) Conte, V.; Furia, F. D.; Moro, S. Tetrahedron
Lett. 1994, 35, 7429-7432; g) Srebnik, M.; Mechoulam, R.; Yona,
I. J. Chem. Soc., Perkin Trans. 1 1987, 1423-1427.
9.
a) Klán, P.; Compounds, John Wiley & Sons of Organic
Compounds, Wiley & Sons, Ltd., Chichester, 2009; b) Hoffmann,
N. Chem. Rev., 2008, 108, 1052-1103.
10. a) Podgorsek, A.; Stavber, S. Zupan, M. Iskra, J. Tetrahedron
2009, 65, 4429-4439; b) Prakash, K. C.; Ramaswamy, A. V.;
Waghmode, S. B. Tetrahedron Lett. 2008, 49, 189-194; c)
Podgorsek, A.; Stavber, S.; Zupan, M.; Iskra, J. Eur. J. Org.
Chem. 2006, 483-488; d) Podgorsek, A.; Stavber, S.; Zupan, M.;
Iskra, J. Tetrahedron Lett. 2006, 47, 1097-1099.
11. For recent reviews see: (a) Punniyamurthy, T.; Velusamy, S.;
Iqbal, J. Chem. Rev. 2005, 105, 2329-2363; (b) Mallat, T.; Baiker,
A. Chem. Rev. 2004, 104, 3037-3058; (c) Stahl, S. S. Angew.
Chem. Int. Ed. 2004, 43, 3400-3420; (d) Piera, J.; Backvall, J.-E.
Angew. Chem. Int. Ed. 2008, 47, 3506-3523.
12. (a) Yamaguchi, T.; Matsusaki, Y.; Tada, N.; Miura, T.; Itoh, A.
Photochem. Photobiol. Sci. 2013, 12, 417-420; (b) Yamaguchi, T.;
Nobuta, T.; Kudo, Y.; Hirashima, S.; Tada, N.; Miura, T.; Itoh, A.