C O M M U N I C A T I O N S
uents and a quaternary carbon center with high chemo- and
diastereoselectivity, we set out to explore the substrate scope (Table
1). Importantly, the allylic C-H activation was not limited to allylic
substrates with the C-H bond adjacent to a nitrogen atom.
Cyclization of simple allylic substrates 1b-d proceeded quite well
to give 2b-d as single diastereoisomers. Besides nitrogen-tethered
substrates, carbon- and oxygen-tethered substrates also reacted well,
generating useful cyclopentane (2c and 2d) and tetrahydrofuran (2f)
structures in good yields. C-H activation was not limited to
terminal alkenes, as demonstrated by the successful reactions of
the phenyl- and dimethyl-substituted alkene substrates 2e-g.
Substituents at the internal position of the alkene did not affect the
efficiency (2h and 2i). The present reaction also tolerated substituent
variation at the conjugated diene moiety, as substrates with phenyl,
hydrogen, and butyl at the R4 position underwent smooth cyclization
to give 2j-l, respectively. Substitution at the allylic and homoallylic
positions of the diene was also tolerated, affording heavily
substituted tetrahydropyrrole derivatives (2k-m) in good yields
and diastereoselectivities. However, substrates substituted at the
allylic position of the ene part failed to undergo cyclization even
at elevated temperature (for details, see the Supporting Information).
Two possible paths for the above reaction were considered
(Scheme 2). The reaction is initiated by coordination of the substrate
to Rh to give complex A, which then undergoes conjugated diene-
assisted oxidative addition to the allylic C-H bond to give
intermediate B. Subsequent alkene insertion into the Rh-H bond
would give complex C or D, which would then undergo a
challenging reductive elimination to form the C(sp3)-C(sp3) bond
in the final product (path I). Alternatively, intermediate B could
undergo alkene insertion into the Rh-C bond to give Rh-H
intermediate E, which would deliver the final product via reductive
elimination (path II).4a,c,d
Preliminary studies to elucidate the reaction mechanism were
performed. The allylic deuterium-labeled substrate 1e-D was
subjected to the reaction conditions (Scheme 3). Analysis of the
product revealed that more than one deuterium was incorporated
into the newly formed methyl group and that the tertiary carbon in
2e-D was only 50% deuterated, suggesting that there is hydrogen/
deuterium exchange between the forming methyl group and the
deuterium-labeled methylene group in the substrate during the
reaction process. This observation precludes path II, while path I
is reasonable if reversible allylic C-H activation and alkene
insertion are taken into consideration. This means that ꢀ-hydride
elimination and reductive elimination from C/D to B and then to
A can shift the original hydrogen atoms of the internal alkene to
the allylic position. After equilibrium, the percentages of deuterium
incorporation at both D1 and D2 reach 50%. This D-labeling
experiment suggests that the irreversible C(sp3)-C(sp3) reductive
elimination rather than the C-H activation is the rate-determining
step in the present reaction.2c,11
In conclusion, we have successfully demonstrated the first
example of conjugated diene-assisted transition-metal-catalyzed
activation of an allylic C-H bond and its addition to the alkene of
the conjugated diene moiety in ene-2-diene substrates. This reaction
generates multisubstituted tetrahydropyrroles, tetrahydrofurans, and
cyclopentanes bearing quaternary carbon centers with high chemo-
and diastereoselectivity. A reversible allylic C-H activation/alkene
insertion prior to an irreversible C-C reductive elimination step
has been proposed on the basis of the results of the D-labeling
experiment. Further exploration of the mechanism and the applica-
tion of this new methodology are currently underway.
Acknowledgment. We thank the Natural Science Foundation
of China (20825205-National Science Fund for Distinguished
Young Scholars, 20672005) for financial support.
Supporting Information Available: Detailed experimental proce-
dures, compound characterization data, and crystallographic data for
2h (CIF). This material is available free of charge via the Internet at
References
(1) (a) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (b) Dick,
A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (c) Godula, K.; Sames,
D. Science 2006, 312, 67. (d) Bergman, R. G. Nature 2007, 446, 391. (e)
Chen, M. S.; White, M. C. Science 2007, 318, 783. (f) Li, B.-J.; Yang,
S.-D.; Shi, Z.-J. Synlett 2008, 949. (g) Chen, X.; Engle, K. M.; Wang,
D. H.; Yu, J.-Q. Angew. Chem., Int. Ed 2009, 48, 5094.
(2) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (b)
Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (c)
Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (d) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. ReV. 2010, 110, 624.
(3) (a) Campos, K. R. Chem. Soc. ReV. 2007, 36, 1069. (b) Li, Z.; Bohle, D. S.;
Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8928. (c) Li, C.-J. Acc.
Chem. Res. 2009, 42, 335. (d) Chen, M. S.; White, M. C. J. Am. Chem.
Soc. 2004, 126, 1346. (e) Young, A. J.; White, M. C. J. Am. Chem. Soc.
2008, 130, 14090. (f) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed.
2008, 47, 4733.
(4) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 9728. (b)
Ajamian, A.; Gleason, J. L. Org. Lett. 2003, 5, 2409. (c) Brummond, K. M.;
Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161. (d) Li, W.;
Yuan, W.; Shi, M.; Hernandez, E.; Li, G. Org. Lett. 2010, 12, 64. For an
oxidative coupling, see: (e) Franze´n, J.; Ba¨ckvall, J.-E. J. Am. Chem. Soc.
2003, 125, 6056.
(5) For Alder-ene cycloisomerization reactions, see: (a) Sturla, S. J.; Kabalaeui,
N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976. (b) Trost,
B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Muller, T. J. Am. Chem.
Soc. 1991, 113, 636. (c) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.
2000, 122, 714. (d) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000,
122, 6490. (e) Fu¨rstner, A.; Majima, K.; Mart´ın, R.; Krause, H.; Kattnig,
E.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 1992.
(6) For the addition of C-H bonds adjacent to heteroatoms to alkenes, see:
(a) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai,
S. J. Am. Chem. Soc. 2001, 123, 10935. (b) Sakaguchi, S.; Kubo, T.; Ishii,
Y. Angew. Chem., Int. Ed. 2001, 40, 2534. (c) Shi, L.; Tu, Y.-Q.; Wang,
M.; Zhang, F.-M.; Fan, C.-A.; Zhao, Y.-M.; Xia, W.-J. J. Am. Chem. Soc.
2005, 127, 10836. (d) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc.
2008, 130, 14940. (e) McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009,
131, 402. (f) Zhang, S.-Y.; Tu, Y.-Q.; Fan, C.-A.; Zhang, F.-M.; Shi, L.
Angew. Chem., Int. Ed. 2009, 48, 8761. For addition to alkynes, see: (g)
Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009,
131, 3166. (h) Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Org.
Lett. 2009, 11, 1821.
Scheme 2. Two Proposed Reaction Paths
(7) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921.
(8) (a) Netherton, M. R.; Fu, G. C. AdV. Synth. Catal. 2004, 346, 1525. (b)
Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674. (c) Rudolph,
A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
(9) For transition-metal-catalyzed intramolecular type-I D-A reactions, see:
(a) Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432. (b)
Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc.
1990, 112, 4965. (c) Gilbertson, S.; DeBoef, B. J. Am. Chem. Soc. 2002,
124, 8784. (d) Aikawa, K.; Akutagawa, S.; Mikami, K. J. Am. Chem. Soc.
2006, 128, 12648, and references therein. For a review of type-II D-A
reactions, see: (e) Bear, B. R.; Sparks, S. M.; Shea, K. J. Angew. Chem.,
Int. Ed. 2001, 40, 820.
Scheme 3. Deuteration Reaction
(10) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104, 2127.
(11) Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani,
N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62.
JA100409B
9
J. AM. CHEM. SOC. VOL. 132, NO. 13, 2010 4543