a shadow of a doubt that the base-catalyzed reactions were
displayed within the cavities of the porous material, the
size-selective catalytic properties and the efficiency of the
catalytic reaction all supported this hypothesis.
Pd(NO3)22H2O. Yield: 20%. 1H NMR (400 MHz, DMSO-d6,ppm):
d = 3.96 (s, 2H), 4.47 (s, 8H), 7.59 (d, 8H), 7.95 (s, 4H), 8.34 (s, 2H),
9.12 (d, 8H), 9.32 (m, 4H). Anal. Calcd. for Pd3(C41H36N8O4)3(NO3)6ꢀ
34CH3OHꢀ8H2O: C, 46.69; H, 6.49; N, 10.40%. Found: C, 45.90; H,
6.84; N, 10.01%. Crystallography: Intensity data of compound 1 were
collected on a Siemens SMART-CCD diffractometer with graphite-
monochromated Mo-Ka (l = 0.71073 A) using the SMART and
IR spectra of the crystalline powder obtained by immersing
as-synthesized compound 1 in benzene containing malono-
nitrile exhibited a peak at about 2218 cmꢄ1, attributed to the
CRN stretching vibrations. The red-shift of the vibration
compared to the free malononitrile (2278 cmꢄ1),18 suggested
the potential interaction between the amide group and the CN
group. 1H NMR (d6-DMSO) of the desolvated powder
obtained by immersed as-synthesized compound 1 in benzene
containing malononitrile exhibited the small but significant
down-field shift of the methylene hydrogen atoms on
malononitrile, also demonstrating the amide groups could
form hydrogen bonds with the malononitrile groups. Detailed
NMR analyses exhibited the possible 1 : 3 stoichiometric
host–guest complexation behaviour of the triangles and the
malononitrile or salicylaldehyde molecules. The NMR of
as-synthesized compound 1 immersed with other active
methylene compounds and salicylaldehyde derivatives only
showed little sorption with the stoichiometry of host–guest
complexation lower than 1 : 0.5. Thus the size selective catalytic
behaviour of compound 1 should be attributed to the possible
selective sorption of cavities in the crystalline solid. ESI-MS
spectra of compound 1 in DMSO solution exhibited three
SAINT programs. Crystal data for 1: C157H260N30O72Pd3; Mr =
3
ꢀ
4039.15, cubic; P43m; a = 30.749(3) A, V = 29073(6) A ; Z = 4;
Dc = 1.251 g cmꢄ3; T = 180(2) K. Rint = 0.1226. The final refinement
gave R1 = 0.0898, wR2 = 0.1921 and Goof = 0.870 for 1926 observed
reflections with I > 2s(I).
1 (a) S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed.,
2004, 43, 2334; (b) J. L. C. Rowsell and O. M. Yaghi, Angew.
Chem., Int. Ed., 2005, 44, 4670; (c) G. Ferey, Chem. Soc. Rev.,
2008, 37, 191.
2 (a) J. Y. Lee, O. M. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen
and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450; (b) A. C. Czaja,
N. Trukhan and U. Muller, Chem. Soc. Rev., 2009, 38, 1284;
¨
(c) M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun,
S. M. Park, G. Seo and K. Kim, J. Am. Chem. Soc., 2009, 131,
7524.
3 J. M. Lehn, Supramolecular Chemistry, VCH, New York, 1995 and
references therein.
4 (a) M. Fujita, Chem. Soc. Rev., 1998, 27, 417; (b) P. J. Stang
and B. Olenyuk, Acc. Chem. Res., 1997, 30, 502; (c) D. L. Caulder
and K. N. Raymond, Acc. Chem. Res., 1999, 32, 975.
5 W. P. Jencks, Catalysis in Chemistry and Enzymology,
McGraw-Hill, New York, 1969.
6 (a) D. J. Cram and J.-M. Cram, Container Molecules and Their
Guests, Royal Society of Chemistry, Cambridge, 1994;
(b) J. W. Steed and J. L. Atwood, Supramolecular Chemistry,
Wiley, Chichester, UK, 2000.
´ ´ ´
7 (a) J. I. Garcıa, B. Lopez-Sanchez and J. A. Mayoral, Org. Lett.,
2008, 10, 4995; (b) S. H. Cho, B. Q. Ma, S. T. Nguyen, J. T. Hupp
and T. E. Albrecht-Schmitt, Chem. Commun., 2006, 2563.
8 (a) M. Heitbaum, F. Glorius and I. Escher, Angew. Chem., Int. Ed.,
2006, 45, 4732; (b) V. Chandrasekhar, P. Thilagar, J. F. Bickley
and A. Steiner, J. Am. Chem. Soc., 2005, 127, 11556; (c) G. Li,
W.-B. Yu and Y. Cui, J. Am. Chem. Soc., 2008, 130, 4582.
main peaks at m/z = 685.85, 872.78 and 1184.70, assignable to
n+
[Pd3L3(DMSO)12(NO3)(6ꢄn)
]
(n = 5, 4 or 3), respectively.
These results gave additional proof for the possible interaction
of the cavities with different kinds of guest molecules including
DMSO and methanol molecules.
Crystalline solid of compound 1 was easily isolated from the
reaction suspension by filtration alone and could be reused
without loss of the activity. The indexes of XRD patterns of
the compound 1 after the reaction exhibited a little smaller cell
parameters (30.0 ꢃ 0.2 A) compared to those of the original
crystal. The maintenance of the crystalline information of the
solid of compound 1 during the reaction processes suggested
the possibility of the powder to be recycled with comparable
catalytic activity. Many macrocycles have been reported as
models to mimic the natural active site in catalyzing specific
biomolecular reactions or as ‘magic’ molecular vessels to
catalyze specific size or shape selective organic reactions in
solution,19 the heterogeneous base catalysis behaviour of
compound 1 is quite significant, because it suggests that the
porous molecular material comprised of seminfinite macro-
cycles have the potential to combine the excellent size
discrimination properties of the macrocycles in solution and
the advantage of heterogeneous catalysts.
9 (a) S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa,
K. Mochizuki, Y. Kinoshita and S. Kitagawa, J. Am. Chem.
Soc., 2007, 129, 2607–2614; (b) K. Uemura, S. Kitagawa,
K. Fukui and K. Saito, J. Am. Chem. Soc., 2004, 126, 3817–3828.
10 (a) S. Neogi, M. K. Sharma and P. K. Bharadwaj, J. Mole. Catal. A:
Chem., 2009, 299; (b) Y. Hwang, D.-Y. Hong, J. S. Chang, S. Jhung,
Y.-K. Seo, J. Kim, A. Vimonet, M. Dautri, C. Serre and G. Fe
Angew. Chem., Int. Ed., 2008, 47, 4144.
´
rey,
11 S. K. Ghosh, S. Bureekaew and S. Kitagawa, Angew. Chem., Int. Ed.,
2008, 47, 3403.
12 C. D. Wu and W. Lin, Angew. Chem., Int. Ed., 2005, 44, 1958.
13 L. Pan, K. M. Adams, H. E. Hernandez, X. Wang, C. Zheng,
Y. Hattori and K. Kaneko, J. Am. Chem. Soc., 2003, 125,
3062.
14 (a) S. Kitagawa and K. Uemura, Chem. Soc. Rev., 2005, 34, 109;
(b) E. Y. Lee, S. Y. Jiang and M. P. Shu, J. Am. Chem. Soc., 2005,
127, 6374.
15 (a) E. Knoevenagel, Chem. Ber., 1894, 27, 2345; (b) G. Marciniak,
A. Delgado, G. Leelere, J. Velly, N. Decken and J. Schwartz,
J. Med. Chem., 1989, 32, 1402.
16 (a) N. M. Evdokimov, A. S. Kireev, A. A. Yakovenko,
M. Y. Antipin, I. V. Magedov and A. Kornienko, J. Org. Chem.,
2007, 72, 3443; (b) N. M. Evdokimov, A. S. Kireev,
A. A. Yakovenko, M. Yu. Antipin, I. V. Magedova and
A. Kornienko, Tetrahedron Lett., 2006, 47, 9309.
This work is supported by the National Natural Science
Foundation of China (20801008 and 20871025), Postdoctoral
Science Foundation of China (20080431135) and the Start-up
Fund of the University of Dalian Technology.
17 M. Costa, F. Areias, L. Abrunhosa, A. Venancio and F. Proenca,
J. Org. Chem., 2008, 73, 1954.
18 I. G. Binev, Y. I. Binev, B. A. Stamboliyska and I. N. Juchnovski,
J. Mol. Struct., 1997, 435, 235.
19 (a) M. W. Hosseini, A. J. Blacker and J.-M. Lehn, J. Am. Chem.
Soc., 1990, 112, 3896; (b) M. D. Pluth, R. G. Bergman and
K. N. Raymond, Science, 2007, 316, 85–88; (c) M. Yoshizawa,
M. Tamura and M. Fujita, J. Am. Chem. Soc., 2004, 126, 6846.
Notes and references
z Preparation of compound 1: Crystals of compound 1 suitable for
X-ray structural analyses were obtained by layering methanol (12 mL)
on a DMSO solution 9 mL containing 0.015 g L and 0.056 g
ꢁc
This journal is The Royal Society of Chemistry 2010
748 | Chem. Commun., 2010, 46, 746–748