Page 3 of 4
Journal of the American Chemical Society
a
Reaction conditions: substrate 6 (0.1 mmol), 2 (2.0 equiv.), Pd(OAc)2 (10 mol%),
We gratefully acknowledge The Scripps Research Institute and
the NIH (NIGMS, 2R01GM084019) for financial support. H. F. is
a visiting scholar sponsored by Sichuan University. We thank
NSF under the Science Across Virtual Institutes program as part
of the CCI Center for Selective C–H Functionalization for funding
a visiting student (R. T.), CHE-1205646.
L6 (20 mol%), KHCO3 (2.0 equiv.), AgF (3.0 equiv.), 1,4-dioxane (1.0 mL), 110 °C.
The second batch of 2a (2.0 equiv.) and AgF (3.0 equiv.) was added at 8 h. The
reactions were run for 18 h total. b Isolated yields.
1
2
3
4
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
5
56
57
58
59
60
To investigate the compatibility of this protocol with other
aliphatic acids, amide 6a derived from 2-methylpentanoic acid
was subjected to standard conditions to afford the arylated product
7a in 45% yield. Extensive optimization including changing
ligands and bases (see SI) improved the yield to 67% (Table 3).
Under these new conditions, a variety of amides derived from
aliphatic acids were arylated in good yields (7b–7d). The cross-
coupling of amide 6e containing a trifluoromethyl group afforded
the desired product 7e in 80% yield. A number of aryl groups on
the β- and γ-positions of amide substrates are tolerated (7e–7i).
The reaction is also tolerant of different types of ether groups
including a benzyl protected β-hydroxyl group (7j–7l). Various
triethoxyarylsilane partners containing methyl, chloro, and
trifluoromethyl groups were coupled with substrate 6l to give the
desired products in good yields (7m–7o). It should be noted that
arylation of alanine-derived amide 1 under these conditions also
proceeds, albeit leading to substantial racemization of the product.
While the β- and γ-aryls did not interfere with the β-C(sp3)–H
activation, the α-aryl group in the ibuprofen-derived substrate was
preferentially ortho-arylated under these conditions (Scheme 3).
To achieve the site-selective β-C–H arylation of 8, we turned to
our previously developed arylation protocol with aryl iodides and
successfully obtained the β-arylated product 10 in 83% yield.16
The observed opposite site selectivity with Pd(II)/Pd(IV)16 and
Pd(II)/Pd(0) catalysis speaks to the importance of developing
different catalytic cycles for C–H activation reactions. We
anticipate the ability to arylate C–H bonds at different positions
using two different protocols will be highly useful in synthesis.
REFERENCES
Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. (c) Martin, R.; Buchwald, S.
(2) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
(4) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L.
(6) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50, 605.
7190.
(8) For representative examples of C–C bond forming reactions using aryl and
alkyl halides, see: (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am.
Chem. Soc. 2010, 132, 3965. (c) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao,
Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2013, 135,
12135.
(9) (a) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am.
Chem. Soc. 2011, 133, 19598. (b) Wasa, M.; Chan, K. S. L.; Zhang, X.-G.;
(10) (a) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.;
M. E.; DeShong, P. Org. Lett. 1999, 1, 2137. (e) Denmark, S. E.; Choi, J.
Chem. Soc. 2010, 132, 1243. (j) Cheng, C.; Hartwig, J. F. J. Am. Chem.
(11) A seminal example of Pd-catalyzed Hiyama cross-coupling with alkyl
(12) (a) Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066.
2009, 48, 5355. (c) Li, W.; Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2011,
76, 8543.
(13) (a) Liang, Z.; Yao, B.; Zhang, Y. Org. Lett. 2010, 12, 3185. (b) Bi, L.;
Georg, G. I. Org. Lett. 2011, 13, 5413. (c) Funaki, K.; Kawai, H.; Sato, T.;
Oi, S. Chem. Lett. 2011, 40, 1050. (d) Han, W.; Mayer, P.; Ofial, A. R.
Chem. Eur. J. 2011, 17, 6904. (e) Kawasumi, K.; Mochida, K.; Kajino, T.;
Segawa, Y.; Itami, K. Org. Lett. 2012, 14, 418.
Scheme 3. C–H Functionalizations of an Ibuprofen-Derived
Amide
In conclusion, ligand-enabled cross-coupling of β-C(sp3)–H
bonds in carboxylic acid derivatives with arylsilanes has been
achieved using a new quinoline-based ligand. The development of
this coupling reaction further demonstrates the potential utility of
quinoline-based ligands in Pd-catalyzed C–H activation reactions.
(14) Senthilkumar, N.; Parthasarathy, K.; Gandeepan, P.; Cheng, C.-H. Chem.
(15) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed.
2010, 49, 2202.
(16) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs,
A.; Yu, J.-Q. Science 2014, 343, 1216.
(17) (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
(b) Wei, Y.; Kan, J.; Wang, M.; Su, W.; Hong, M. Org. Lett. 2009, 11,
3346. (c) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.;
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and spectral data for all new compounds
(PDF). This material is available free of charge via the Internet at
(18) (a) Hatanaka, Y.; Fukushima, S.; Hiyama, T. Chem. Lett. 1989, 18, 1711.
(b) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268. (c) Sugiyama,
A.; Ohnishi, Y.-y.; Nakaoka, M.; Nakao, Y.; Sato, H.; Sakaki, S.; Nakao,
AURHOR INFORMATION
Corresponding Author
(19) DFT computational studies on ligand-promoted C(sp3)–H arylation, see:
Dang, Y.; Qu, S.; Nelson, J. W.; Pham, H. D.; Wang, Z.-X.; Wang, X. J.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGEMENTS
ACS Paragon Plus Environment