Communication
Organic & Biomolecular Chemistry
Notes and references
1 L. L. Lairson, B. Henrissat, G. J. Davies and S. G. Withers,
Annu. Rev. Biochem., 2008, 77, 521.
2 C. A. G. M. Weijers, M. C. R. Franssen and G. M. Visser,
Biotechnol. Adv., 2008, 26, 436.
3 L. F. Leloir, Science, 1971, 172, 1299.
4 H.-D. Junker and W.-D. Fessner, Tetrahedron Lett., 1998, 39,
269.
5 O. Gaurat, J. Xie and J.-M. J. Valéry, Carbohydr. Chem.,
2003, 22, 645.
6 N. Auberger, C. Gravier-Pelletier and Y. Le Merrer,
Eur. J. Org. Chem., 2009, 3323.
7 R. A. Dwek, Chem. Rev., 1996, 96, 683.
8 H. Schachter, Glycoconjugate J., 2001, 17, 465.
9 S. M. Bowman and S. J. Free, Bioessays, 2006, 28, 799.
10 J. Van Heijenoort, Microbiol. Mol. Biol. Rev., 2007, 71,
620.
11 A. Bouhss, A. E. Trunkfield, T. D. H. Bugg and D. Mengin-
Lecreulx, FEMS Microbiol. Rev., 2008, 32, 208.
12 F. Casero, L. Cipolla, L. Lay, F. Nicotra, L. Panza and
G. Russo, J. Org. Chem., 1996, 61, 3428.
13 J. Hajduch, G. Nam, E. J. Kim, R. Fröhlich, J. A. Hanover
and K. L. Kirk, Carbohydr. Res., 2008, 343, 189.
14 A. Dondoni, A. Marra and C. Pasti, Tetrahedron: Asymmetry,
2000, 11, 305.
Scheme 3 Synthetic elaboration toward fluorinated aminoglycosyl
phosphonates. a Determined by 19F NMR using α,α,α-trifluorotoluene as
the internal standard.
the partially deprotected aminoglycosyl phosphonate 5. This
compound could also be obtained when 2a was first subjected
to hydrogenation with Pd(OH)2/C followed by N-acetylation in
90% yield over two steps. Treatment of glycosyl phosphonate 3
with TMSI provided the target aminoglycosyl phosphonate 6.
Deprotection of the allyl esters of 2h smoothly proceeded
under mild conditions using Pd(PPh3)4 in the presence of
potassium 2-ethylhexanoate, affording the dipotassium phos-
phonate 7.
15 R. Chang, T.-T. Vo and N. S. Finney, Carbohydr. Res., 2006,
341, 1998.
16 K. Müller, C. Faeh and F. Diederich, Science, 2007, 317,
1881.
17 S. Purser, P. R. Moore, S. Swallow and V. Gouverneur,
Chem. Soc. Rev., 2008, 37, 320.
18 D. O’Hagan, Chem. Soc. Rev., 2008, 37, 308.
19 V. D. Romanenko and V. P. Kukhar, Chem. Rev., 2006, 106,
3868.
20 E. Leclerc, X. Pannecoucke, M. Ethève-Quelquejeu and
M. Sollogoub, Chem. Soc. Rev., 2013, 42, 4270.
21 M.-C. Belhomme, T. Poisson and X. Pannecoucke, Org.
Lett., 2013, 15, 3428.
22 F. Poulain, E. Leclerc and J.-C. Quirion, Tetrahedron Lett.,
2009, 50, 1803.
23 R. R. Schmidt and Y. D. Vankar, Acc. Chem. Res., 2008, 41,
1059.
24 T. Delaunay, T. Poisson, P. Jubault and X. Pannecoucke,
Eur. J. Org. Chem., 2014, 7525.
25 During the preparation of this manuscript, Pannecoucke
et al., reported the β-selective addition of organolithium
reagents to 2-nitroglycals; see: T. Delaunay, T. Poisson,
P. Jubault and X. Pannecoucke, Eur. J. Org. Chem., 2014,
3341.
Conclusions
We have established a highly efficient and stereoselective route
to fluorinated aminoglycosyl phosphonates starting from
readily available nitroglycals.34 We have shown that introdu-
cing rigidity in the carbohydrate framework could provide
access to the biologically important α-anomer. The use of
orthogonal protection strategies provides opportunities for
post-modification of the carbohydrates or further functionali-
zation of the phosphonates to obtain mimics of nucleotide
diphosphate derivatives (e.g. UDP-GlcNAc) as competitive
inhibitors of glycosyl transferases.
26 P. K. Kancharla, Y. S. Reddy, S. Dharuman and Y. D. Vankar,
J. Org. Chem., 2011, 76, 5832.
27 S. Dharuman, P. Gupta, P. K. Kancharla and Y. D. Vankar,
J. Org. Chem., 2013, 78, 8442.
Acknowledgements
This work was financially supported by the Priority Medicines
Program of the Netherlands Organization for Health research 28 We chose to report yields and product distribution deter-
and Development (ZonMW).
mined by 19F NMR with an internal standard to provide an
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2014