G Model
CCLET 3418 1–5
4
S. Sarva et al. / Chinese Chemical Letters xxx (2015) xxx–xxx
Table 1
Anti-bacterial activity of bis(indolyl)methanes.
Research Fellowship (SRF) to Ms. S. Santhisudha under UGC-RGNF
(Rajiv Gandhi National Fellowship) scheme and for providing
financial assistance through a Major Research Project (F. No. 42-
281/2013 (SR), Dated: 12-03-2013).
196
197
198
199
Compounds
Zone of inhibition (mm)a
3a
–
3b
–
3c
2.7
6.6
7.2
–
3d
Appendix A. Supplementary data
200
3e
3f
Supplementary data associated with this article can be found, in
201
202
3g
–
3h
3.4
9.1
9.3
–
3i
3j
References
203
3k
3l
–
3m
4.5
7.8
16.2
18.0
[1] J. Kluytmans, A. Van Belkum, H. Verbrugh, Nasal carriage of Staphylococcus aureus:
epidemiology, underlying mechanisms, and associated risks, Clin. Microbiol. Rev.
10 (1997) 505–520.
[2] B. John, Experimental Staph Vaccine Broadly Protective in Animal Studies, 1997. Q3 207
[3] C. Walsh, Antibiotics: Actions, Origins, Resistance, ASM Press, Washington, DC,
204
205
206
3n
3o
Tetracycline
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
a
Concentration in 100 mg/mL.
2003.
[4] L. Ferrero-Miliani, O.H. Nielsen, P.S. Andersen, S.E. Girardin, Chronic inflamma-
tion: importance of NOD2 and NALP3 in interleukin-1b generation, Clin. Exp.
Immunol. 147 (2007) 227–235.
[5] A. Kar, Medicinal Chemistry, 2nd ed., New Age International Publishers, New
Delhi, 2003p. 329.
[6] G. Kant, A. Parate, S.C. Chaturvedi, Qsar study of substituted 3,5-di-tert-butyl-4-
hydroxy styrene: a series with antiinflammatory activity, Indian J. Pharm. Sci. 67
(2005) 116–119.
[7] G.M. Cragg, P.G. Grothaus, D.J. Newman, Impact of natural products on developing
new anti-cancer agents, Chem. Rev. 109 (2009) 3012–3043.
[8] G.A. Von Cordell, Introduction to Alkaloids: A Biogenetic Approach, Wiley, New
York, 1981.
[9] P. Bey, F.N. Bolkenius, N. Seiler, P. Casara, N-(2,3-Butadienyl)-1, 4-butanediamine
derivatives: potent irreversible inactivators of mammalian polyamine oxidase, J.
Med. Chem. 28 (1985) 1–2.
[10] R. Bell, S. Carmeli, N. Sar, Vibrindole A, a metabolite of the marine bacterium,
vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion
cubicus, J. Nat. Prod. 57 (1994) 1587–1590.
[11] K. Reddi Mohan Naidu, S.I. Khalivulla, S. Rasheed, et al., Synthesis of
bisindolylmethanes and their cytotoxicity properties, Int. J. Mol. Sci. 14 (2013)
1843–1853.
[12] M. Lounasmaa, A. Tolvanen, Simple indole alkaloids and those with a nonrear-
rangedmonoterpenoid unit, Nat. Prod. Rep. 17 (2000) 175–191.
[13] K. Sujatha, P.T. Perumal, D. Muralidharan, M. Rajendran, Synthesis, analgesic and
anti-inflammatory activities of bis(indolyl)methanes, Indian J. Chem. 48 (2009)
267–272.
[14] R.E. Moore, C. Cheuk, X.Q.G. Yang, et al., Hapalindoles, antibacterial and anti-
mycotic alkaloids from the cyanophyte hapalosiphon fontinalis, J. Org. Chem. 52
(1987) 1036–1043.
[15] J.S. Yadav, B.V.S. Reddy, C.V.S.R. Murthy, G.M. Kumar, C. Madan, Lithium perchlo-
rate catalyzed reactions of indoles: an expeditious synthesis of bis(indolyl)-
methanes, Synthesis (2001) 783–787.
[16] W.L. Deb, P.J. Bhuyan, An efficient and clean synthesis of bis(indolyl)methanes in a
protic solvent at room temperature, Tetrahedron Lett. 47 (2006) 1441–1443.
[17] R.R. Rahul, D.B. Shinde, Zirconyl (IV) chloride-catalysed reaction of indoles: an
expeditious synthesis of bis(indolyl)methanes, Acta Chim. Slov. 53 (2006)
210–213.
[18] G. Babu, N. Sridhar, P.T. Perumal, A convenient method of synthesis of bis-
indolylmethanes: indium trichloride catalyzed reactions of indole with aldehydes
and schiff’s bases, Synth. Commun. 30 (2000) 1609–1614.
[19] H. Firouzabadi, N. Iranpoor, A.A. Jafari, Aluminumdodecatungstophosphate
(AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes
efficient preparation of indolederivatives, J. Mol. Catal. A Chem. 244 (2006)
168–172.
[20] S.J. Ji, J.F. Zhou, D.G. Gu, S.Y. Wang, S.Y. Loh, Efficient synthesis of bis(indolyl)-
methanes catalyzed by lewis acids in ionic liquids, Synlett 35 (2003) 2077–2079.
[21] G.V.M. Sharma, J.J. Reddy, P.S. Lakshmi, P.R. Krishna, A versatile and practical
synthesis of bis(indolyl)methanes/bis(indolyl)glycoconjugates catalyzed by tri-
chloro-1,3, 5-triazine, Tetrahedron Lett. 45 (2004) 7729–7732.
[22] S. Khaksar, S.M.J. Ostad, Pentafluorophenylammonium triflate as an efficient,
environmentally friendly and novel organocatalyst for synthesis of bis-indolyl
methane derivatives, J. Fluorine Chem. 132 (2011) 937–939.
[23] A. Kamal, A.A. Qureshi, Syntheses of some substituted di-indolylmethanes in
aqueous medium at room temperature, Tetrahedron 19 (1963) 513–520.
[24] R. Nagarajan, P.T. Perumal, Potassium hydrogen sulfate-catalyzed reactions of
indoles: a mild, expedient synthesis of bis-indolylmethanes, Chem. Lett. 33
(2004) 288–289.
Table 2
In vitro anti-inflammatory activity of bis(indolyl)methanes.
Entry
% Hemolysis
50a
% Protection
50a
100a
100a
3a
3b
3c
3d
3e
3f
69.44
47.22
52.77
55.83
79.72
63.88
33.33
66.66
41.60
30.55
44.44
72.22
94.40
86.10
77.77
75.00
58.33
30.55
38.8
30.6
41.67
69.45
61.2
52.78
47.3
45.55
67.50
55.55
27.77
52.77
25.00
22.22
27.70
52.77
80.55
66.66
58.33
66.60
44.17
20.28
36.12
66.67
33.34
58.40
69.45
55.56
27.78
5.60
54.45
32.50
44.45
72.23
47.23
75.00
77.78
72.30
47.23
19.45
33.40
41.67
33.40
3g
3h
3i
3j
3k
3l
3m
3n
3o
13.90
22.23
25.00
Diclofenac
a
Concentration in
m
g/mL.
179
4. Conclusion
180
181
182
183
184
185
186
187
188
189
Green synthesis of bis(indolyl)methanes by microwave irradi-
ation condition of indole with aldehydes under solvent free
conditions is reported. This procedure has short reaction time and
affords high product yields. Compound 3o showed good antibac-
terial activity against S. aureus. The anti-inflammatory activity
revealed almost all title compounds except 3m exhibited good
anti-inflammatory activity. Compounds 3j, 3i, 3k and 3g showed
much higher anti-inflammatory activity than the standard
diclofenac drug and thus qualifying for further clinical evaluation
so that they can be used as effective anti-inflammatory agents.
190 Q2 Uncited references
191
192
[33–39].
Acknowledgment
[25] S.J. Ji, S.Y. Wang, Y. Zhang, T.P. Loh, Facile synthesis of bis(indolyl)methanes using
catalytic amount of iodine at room temperature under solvent-free conditions,
Tetrahedron 60 (2004) 2051–2055.
[26] A. Loupy, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2006.
[27] M. Chakrabarti, S. Sarkar, Novel clay-mediated, tandem addition-elimination-
(Michael) addition reactions of indoles with 3-formylindole: an eco-friendly
193
194
195
We thank Prof. C.D. Reddy, Department of Chemistry, S.V.
University, Tirupati for his helpful discussions and University
Grants Commission (UGC), New Delhi, India for providing Senior
Please cite this article in press as: S. Sarva, et al., Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes, Chin.