Published on Web 02/17/2010
Diastereoisomerically Pure Fulleropyrrolidines as Chiral
Platforms for the Design of Optically Active Liquid Crystals
Ste´phane Campidelli,†,⊥ Philippe Bourgun,† Boris Guintchin,† Julien Furrer,‡
Helen Stoeckli-Evans,§ Isabel M. Saez,| John W. Goodby,*,| and Robert Deschenaux*,†
Institut de Chimie, UniVersite´ de Neuchaˆtel, AVenue de BelleVaux 51, Case Postale 158,
2009 Neuchaˆtel, Switzerland, SerVice Analytique Facultaire, Institut de Chimie, UniVersite´ de
Neuchaˆtel, AVenue de BelleVaux 51, 2009 Neuchaˆtel, Switzerland, Institut de Physique,
UniVersite´ de Neuchaˆtel, Rue Emile-Argand 11, 2009 Neuchaˆtel, Switzerland, and Department of
Chemistry, The UniVersity of York, Heslington, York YO10 5DD, U.K.
Received December 2, 2009; E-mail: jwg500@york.ac.uk; robert.deschenaux@unine.ch
Abstract: Incorporation of [60]fullerene (C60) within self-organizing systems is conceptually challenging
but allows us to obtain materials which combine the characteristics (anisotropy, organization) of condensed
mesophases with the properties of C60 (photo- and electrochemical activity). Here, we report on the synthesis,
characterization, and liquid-crystalline properties of four optically active fullerodendrimers, which are chiral
at the point of conjunction between the fullerene scaffold and the mesogenic moieties. Thus, the novelty
of this study is to take advantage of the asymmetric carbon atom created during the 1,3-dipolar cycloaddi-
tion reaction on C60 in order to induce mesoscopic chirality in the materials. Four diastereoisomeric
fulleropyrrolidines ((R,S)-1, (R,R)-1, (S,R)-1, and (S,S)-1) were synthesized and associated with a second-
generation nematic (N) dendron to give fullerodendrimers ((R,S)-2, (R,R)-2, (S,R)-2, and (S,S)-2) which
display chiral nematic (N*) phases. The absolute configurations of the stereogenic centers were determined
by X-ray crystallography, 1D and 2D NMR experiments, and circular dichroism (CD) spectroscopy. The
liquid-crystalline properties of the fullerodendrimers were studied by polarized optical microscopy (POM)
and differential scanning calorimetry (DSC). The fulleropyrrolidine derivatives 2 exhibit supramolecular
helicoidal organizations with a right-handed helix for the (R,S)-2 and (R,R)-2 diastereoisomers and a left-
handed helix for the (S,R)-2 and (S,S)-2 diastereoisomers. This result suggests that the self-organization
of such supermolecular materials can be controlled at the molecular level by the introduction of only one
chiral center.
Introduction
in such mesophases opens opportunities for the design of liquid
crystals displaying novel electro- and photoactive properties
within a designed/desirable chiral supramolecular environment.
With the successful development of the nanotechnologies via
a bottom-up approach, the design of self-organizing nanostruc-
tures obtained by the organization of multifunctional molecular
units has attracted much attention in the scientific community.1,2
In this context, liquid crystals are important systems, as their
self-organization can be controlled in order to generate complex
supramolecular architectures, the properties of which can be
tuned by structural engineering at the molecular level.3 Chiral
nematic (N*) and chiral smectic C (SmC*) phases and their
attendant physical properties such as thermochromism, ferro-
electricity, and pyroelectricity have found numerous practical
applications in, for example, displays, light modulators, and
thermal imaging devices. The presence of [60]fullerene (C60)
The functionalization of C60 with mesomorphic malonates
(via the Bingel reaction4) or with mesomorphic aldehydes
(via the 1,3-dipolar cycloaddition reaction5,6) has led to
liquid-crystalline methanofullerenes or fulleropyrrolidines,
respectively, which display smectic,7-9 columnar,10-12 ne-
(4) Bingel, C. Chem. Ber. 1993, 126, 1957.
(5) Confalone, P. N.; Huie, E. M. J. Org. Chem. 1983, 48, 2994.
(6) (a) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519. (b)
Tagmatarchis, N.; Prato, M. Synlett 2003, 6, 768.
(7) (a) Dardel, B.; Guillon, D.; Heinrich, B.; Deschenaux, R. J. Mater.
Chem. 2001, 11, 2814. (b) Campidelli, S.; Va´zquez, E.; Milic, D.;
Prato, M.; Barbera´, J.; Guldi, D. M.; Marcaccio, M.; Paolucci, D.;
Paolucci, F.; Deschenaux, R. J. Mater. Chem. 2004, 14, 1266. (c)
Allard, E.; Oswald, F.; Donnio, B.; Guillon, D.; Delgado, J. L.; Langa,
F.; Deschenaux, R. Org. Lett. 2005, 7, 383. (d) Campidelli, S.; Lenoble,
J.; Barbera´, J.; Paolucci, F.; Marcaccio, M.; Paolucci, D.; Deschenaux,
R. Macromolecules 2005, 38, 7915. (e) Campidelli, S.; Pe´rez, L.;
Rodr´ıgez-Lo´pez, J.; Barbera´, J.; Langa, F.; Deschenaux, R. Tetrahe-
dron 2006, 62, 2115.
† Institut de Chimie, Universite´ de Neuchaˆtel.
‡ Service Analytique Facultaire, Universite´ de Neuchaˆtel.
§ Institut de Physique, Universite´ de Neuchaˆtel.
| University of York.
⊥ Current address: CEA, IRAMIS, Laboratoire d’Electronique Mole´cu-
laire, 91191 Gif sur Yvette, France.
(1) Huck, W. T. S. Nanoscale Assembly; Springer: New York, 2005.
(2) Schlu¨ter, A. D. Functional Molecular Nanostructures; Springer: New
York, 2005.
(3) (a) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed.
2006, 45, 38. (b) Saez, I. M.; Goodby, J. W. Struct. Bonding (Berlin)
2008, 128, 1.
(8) Felder-Flesch, D.; Rupnicki, L.; Bourgogne, C.; Donnio, B.; Guillon,
D. J. Mater. Chem. 2006, 16, 304.
(9) Nakanishi, T.; Shen, Y.; Wang, J.; Yagai, S.; Funahashi, M.; Kato,
T.; Fernandes, P.; Mo¨hwald, H.; Kurth, D. G. J. Am. Chem. Soc. 2008,
130, 9236.
9
3574 J. AM. CHEM. SOC. 2010, 132, 3574–3581
10.1021/ja910128e 2010 American Chemical Society