A. Rivkin et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1269–1271
1271
Table 3
continued our SAR studies with 9 since 5-tert-butyl-2-methylani-
In vitro activity of 2,4,6-trisubstituted pyrimidines against Notch cleavage
line was potentially less prone to metabolism than 4-ethoxyaniline
or 1,4-benzenediamine moieties.
13
Compound
Notch IC50 (nM)
Notch IC50/Ab42 IC50
Preliminary SAR studies showed that the 6-position of the
pyrimidine ring of 9 was a permissive region for polar groups. With
this in mind, we focused our SAR efforts in this area with the goal
of concurrently improving potency and the physical parameters of
9 (Table 2). In our survey we found that polar groups were well tol-
erated in this region with potency retained and physical parame-
ters improved. Of all the polar substitutions examined,
19
22
23
24
25
26
27
29
6140
180
>50,000
>50,000
28,840
>50,000
>50,000
>50,000
34,430
>250
>190
270
>230
>210
>190
390
Table 2
In vitro activity of 2,4,6-trisubstituted pyrimidines against Ab42 and Ab40
hydroxymethyl 19 was the most potent which may be due to the
gain of a hydrogen bond interaction.
R
N
Several lead compounds were profiled in a Notch cleavage as-
say13 and found to have at least a 180-fold selectivity ratio be-
tween inhibition of Ab42 and Notch cleavage (Table 3).
In summary, a novel class of piperazinyl pyrimidines was dis-
covered which demonstrates potent and selective in vitro inhibi-
tion of Fb42 over Ab40 production and at least 180-fold
selectivity over inhibition of Notch cleavage. The SAR studies are
highlighted by the significant improvement in Fb42/Ab40 selectiv-
ity via introduction of the gem-dimethyl group. These results sup-
N
N
N
H
N
O
Compound
R1
Ab42
Ab40
IC50 (nM)
10
10
IC50 (nM)
port that modulating the cleavage site of
c-secretase substrates
with small molecules may prove to be an effective anti-amyloid
therapeutic strategy while avoiding Notch-related toxicities.
O
S
14
348
6461
O
References and notes
O O
S
15
16
400
234
5780
1927
1. (a) Selkoe, D. Physiol. Rev. 2001, 81, 741; Hardy, J. A.; Higgins, G. A. Science 1992,
256, 184; Golde, T. E. J. Clin. Invest. 2003, 111, 1.
2. (a) Herbert, L. E.; Beckett, L. A.; Scherr, P. A.; Evans, D. A. Alzheimer Dis. Assoc.
Disord. 2001, 15, 169; (b) Griffiths, H. H.; Morten, I.; Hooper, N. M. Expert Opin.
Ther. 2008, 12, 704.
3. Cummings, J. L. N. Eng. J. Med. 2004, 351, 56.
4. (a) Dickson, D. W. J. Neuropathol. Exp. Neurol. 1997, 56, 321; (b) Hardy, J.;
Selkoe, D. J. Science 2002, 297, 353.
O
OH
O
17
572
6408
OH
5. Imbimbo, B. P. Curr. Top. Med. Chem. 2008, 8, 54.
O
6. (a) Maillard, I.; Adler, S. H.; Pear, W. S. Immunity 2003, 19, 781; (b) Stanger, B.
Z.; Datar, R.; Murtaught, L. C.; Melton, D. A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
12443; (c) Behr, D. Curr. Top. Med. Chem. 2008, 8, 34.
7. (a) In’t Veld, B. A.; Ruitenberg, A.; Hofman, A.; Launer, L. J.; Van Duijn, C. M.;
Stijnen, T.; Breteler, M. M. B.; Stricker, B. H. C. N. Eng. J. Med. 2001, 345, 1515;
(b) Weggen, S.; Eriksen, J. L.; Das, P.; Sagi, S. A.; Wang, R.; Pietrzik, C. U.; Findlay,
K. A.; Smith, T. E.; Murphy, M. P.; Butler, T.; Kang, D. E.; Marquez-Sterling, N.;
Golde, T. E.; Koo, E. H. Nature 2001, 414, 212; (c) Lim, G. P.; Yang, F.; Chu, T.;
Chem, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.; Hsaio Ahse, K.; Reautschy, S.
A.; Cole, G. M. J. Neurosci. 2000, 20, 5709.
18
19
85
34
2289
823
O
OH
O
O
O
20
21
22
307
112
194
2985
1712
8120
N
H
8. (a) Peretto, I.; La Porta, E. Curr. Top. Med. Chem. 2008, 8, 38; (b) Pissarnitski, D.
Curr. Opin. Drug Disc. Dev. 2007, 10, 392.
9. Blurton, P.; Fletcher, S.; Teall, M.; Harrison, T.; Munoz, B.; Rivkin, A.; Hamblett,
N
O
N
H
C.; Siliphaivanh, P.; Otte, K. WO 099210, 2008.
10. IC50 measurements for Ab40 and Ab42 were determined using
electrochemiluminescent detection of peptides secreted by SH-SY5Y cells
stably overexpressing the b-APP C-terminal fragment SPA4CT. Consistent with
N
H
the profiles of c-secretase modulators, total Ab peptide levels were constant (a)
O
O
Best, J. D.; Jay, M. T.; Otu, F.; Ma, J.; Nadin, A.; Ellis, S.; Lewis, H. D.; Pattison, C.;
Reilly, M.; Harrison, T.; Shearman, M. S.; Williamson, T. L.; Atack, J. R. J. Pharm.
Exp. Ther. 2005, 313, 902; (b) Clarke, E. E.; Shearman, M. S. J. Neurosci. Methods
2000, 102, 61; (c) Dyrks, T.; Dyrks, E.; Monning, U.; Urmoneit, B.; Turner, J.;
Beyreuther, K. FEBS Lett. 1993, 335, 89.
23
24
262
108
5682
1586
N
O
11. Compound 29 was prepared using methods reported by Li, C.; Rosenau, A.
Tetrahedron Lett. 2009, 5888.
25
26
216
235
5452
5598
OH
N
12. Conformational analysis was performed with the implicit Generalized–Born
solvent model with 8 kcal/mol energy cutoff. Clustering of conformers based
on the atomic RMS dissimilarity was used to generate the 10 most diverse
representative conformers. Two of the most diverse conformers for 1 and 2 are
shown in Figure 2.
O
O
13. HeLa cells were made to co-express nonfunctional halves of luciferase, one
N
27
263
6151
fused to Notch
Notch E results in release of Notch intracellular domain (NICD)/N-terminal
luciferase, which translocates to the nucleus and binds the RBP-J /C-terminal
luciferase to form functional luciferase enzyme. This split-luciferase
DE and the other to RBP-Jj. c-Secretase mediated cleavage of
O
D
j
N
a
28
29
213
88
1970
830
N
complementation system is used to detect NICD levels by measuring total
luminescence upon addition of luciferin to lysed cells Paulmurugan, R.;
Gambhir, S. S. Anal. Chem. 2005, 77, 1295.
NH2