unique reflns = 5207, Rint = 0.0395, R1 = 0.0519, wR2 = 0.1335
(I
4
2s(I)) and GOF
=
1.005; For [Kꢄ(18-crown-6)][1F]:
C45H65B11FKO6, Mw = 866.97, l = 0.71073 A, Monoclinic, Pn,
a = 14.5518(5), b = 11.4399(4), c = 15.0625(6) A, a = 90.00, b =
94.463(2), g = 90.001, V = 2499.87(16) A3, Z = 2, rc = 1.152 g cmꢀ3
,
m = 0.153 mmꢀ1, T = 296(2) K, measd reflns = 25774, unique reflns =
6986, Rint = 0.0339, R1 = 0.0769, wR2 = 0.2162 (I 4 2s(I)) and GOF =
1.024; For 2: C27H39B11, Mw = 482.49, l = 0.71073 A, Monoclinic,
P21/n, a = 7.9560(4), b = 27.7402(15), c = 13.6954(8) A, a = 90.00,
b = 93.533(3), g = 90.001, V = 3295.4(3) A3, Z = 4, rc
=
1.062 g cmꢀ3, m = 0.054 mmꢀ1, T = 296(2) K, measd reflns = 56 299,
unique reflns = 6956, Rint = 0.0437, R1 = 0.0597, wR2 = 0.1658
(I 4 2s(I)) and GOF = 1.038. CCDC reference numbers 1, 746 882;
[Kꢄ(18-crown-6)][1F], 746 881; 2, 746 883.
Fig. 3 HOMO and LUMO of 1 (isovalue = 0.04 a.u.).
To elucidate the increase in the Lewis acidity, the DFT
calculations were carried out at the B3LYP/6-31G(d) level of
theory. The frontier orbitals of 1 show that while the HOMO
is mainly located on the mesityl rings with an orbital
contribution of 87%, the LUMO bears a substantial contri-
bution from the o-carborane cage (16%), as well as from the
empty p-orbital of the boron atom (22%) and the phenylene
ring (32%) (Fig. 3). Further inspection of the LUMO indicates
that the delocalization occurs through exo-p-interaction28
between the tangential p-orbital on the C1 atom of the
o-carborane cage and the p*-system of the triarylborane
moiety.
1 M. Ullrich, A. J. Lough and D. W. Stephan, J. Am. Chem. Soc.,
2009, 131, 52–53.
2 S. J. Geier, T. M. Gilbert and D. W. Stephan, J. Am. Chem. Soc.,
2008, 130, 12632–12633.
3 D. W. Stephan, Org. Biomol. Chem., 2008, 6, 1535–1539 and
references cited therein.
4 G. C. Welch, R. R. S. Juan, J. D. Masuda and D. W. Stephan,
Science, 2006, 314, 1124–1126.
5 G. Erker, Dalton Trans., 2005, 1883–1890.
6 W. E. Piers, Adv. Organomet. Chem., 2005, 52, 1–76.
7 E. Y. X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391–1434.
¨
8 T. W. Hudnall, C.-W. Chiu and F. P. Gabbaı, Acc. Chem. Res.,
2009, 42, 388–397.
9 K. Parab, K. Venkatasubbaiah and F. Jakle, J. Am. Chem. Soc.,
¨
2006, 128, 12879–12885.
10 S. Sole and F. P. Gabbaı, Chem. Commun., 2004, 1284–1285.
´
¨
11 S. Yamaguchi, S. Akiyama and K. Tamao, J. Am. Chem. Soc.,
2001, 123, 11372–11375.
12 S. A. Cummings, M. Iimura, C. J. Harlan, R. J. Kwaan,
More importantly, the LUMO energy level of 1 (ꢀ2.10 eV)
is found to be substantially lower than that calculated for the
LUMO of 4 (ꢀ1.63 eV) at the same level of theory, indicating
that 1 is much more Lewis acidic than 4 (Fig. S14w). This result
is in fact in excellent agreement with the enhanced fluoride ion
affinity of 1 and 2. Despite the almost identical compositions
of HOMO for 1 and 4, the HOMO level of 1 (ꢀ6.19 eV) is also
lower than that of 4 (ꢀ6.06 eV), implying the strong inductive
electron-withdrawing effect of the o-carborane cage. However,
since the relative stabilization of the LUMO of 1 with respect
to 4 is greater than that of the HOMO, it can be suggested that
in addition to the inductive effect, the direct contribution of
the o-carborane cage to the LUMO of 1 is strongly associated
with the large stabilization of the LUMO.
I. V. Trieu, J. R. Norton, B. M. Bridgewater, F. Jakle,
¨
A. Sundararaman and M. Tilset, Organometallics, 2006, 25,
1565–1568.
13 G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda,
P. Wei and D. W. Stephan, Dalton Trans., 2007, 3407–3414.
14 Y. Kim, H. Zhao and F. P. Gabbaı, Angew. Chem., Int. Ed., 2009,
¨
48, 4957–4960.
15 C.-W. Chiu, Y. Kim and F. P. Gabbaı, J. Am. Chem. Soc., 2009,
¨
131, 60–61.
16 T. W. Hudnall and F. P. Gabbaı, J. Am. Chem. Soc., 2007, 129,
¨
11978–11986.
17 M. H. Lee and F. P. Gabbaı, Inorg. Chem., 2007, 46, 8132–8138.
¨
18 M. H. Lee, T. Agou, J. Kobayashi, T. Kawashima and
F. P. Gabbaı, Chem. Commun., 2007, 1133–1135.
¨
19 C.-W. Chiu and F. P. Gabbaı, J. Am. Chem. Soc., 2006, 128,
¨
14248–14249.
In conclusion, the introduction of an o-carborane cage into
the triarylborane significantly enhances the Lewis acidity of
the boron atom. It is suggested that the contribution of the
o-carborane cage to LUMO coupled with a strong inductive
effect leads to the large stabilization of the LUMO of
triarylboranes.
20 Y. Sun and S. Wang, Inorg. Chem., 2009, 48, 3755–3767.
21 Y. Sun, N. Ross, S.-B. Zhao, K. Huszarik, W.-L. Jia, R.-Y. Wang,
D. Macartney and S. Wang, J. Am. Chem. Soc., 2007, 129,
7510–7511.
22 M. F. Hawthorne, Advances in Boron Chemistry: Special
Publication No. 201, Royal Society of Chemistry, London, 1997.
23 V. I. Bregadze, Chem. Rev., 1992, 92, 209–223 and references
therein.
24 C. Songkram, K. Takaishi, K. Yamaguchi, H. Kagechika and
Y. Endo, Tetrahedron Lett., 2001, 42, 6365–6368.
25 M. Lamrani, R. Hamasaki, M. Mitsuishi, T. Miyashita and
Y. Yamamoto, Chem. Commun., 2000, 1595–1596.
Financial support from the Korea Science and Engineering
Foundation (No. R01-2007-000-20299-0 and No. R11-2007-
012-03001-0) and the Priority Research Centers Program of
the National Research Foundation of Korea (No. 2009-
0093818) are gratefully acknowledged.
26 M. Melaımi and F. P. Gabbaı, J. Am. Chem. Soc., 2005, 127,
¨
9680–9681.
¨
Notes and references
27 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165–195.
28 L. A. Boyd, W. Clegg, R. C. B. Copley, M. G. Davidson,
M. A. Fox, T. G. Hibbert, J. A. K. Howard, A. Mackinnon,
R. J. Peace and K. Wade, Dalton Trans., 2004, 2786–2799.
z Crystal Data for 1: C32H41B11, Mw = 544.56, l = 0.71073 A,
Monoclinic, P21/c, a = 11.3388(7), b = 21.7577(12), c = 13.6469(8) A,
a = 90.00, b = 101.822(4), g = 90.001, V = 3295.4(3) A3, Z = 4, rc =
1.098 g cmꢀ3, m = 0.057 mmꢀ1, T = 296(2) K, measd reflns = 24356,
ꢁc
This journal is The Royal Society of Chemistry 2010
1140 | Chem. Commun., 2010, 46, 1138–1140