Journal of the American Chemical Society
Article
(c) Sumiyoshi, H.; Wargovich, M. J. Chemoprevention of 1,2-
Dimethylhydrazine-induced Colon Cancer in Mice by Naturally
Occurring Organosulfur Compounds. Cancer Res. 1990, 50, 5084−
5087. (d) Arora, A.; Siddiqui, I. A.; Shukla, Y. Modulation of p53 in
7,12-dimethylbenz[a]anthracene−induced skin tumors by diallyl
sulfide in Swiss albino mice. Mol. Cancer Ther. 2004, 3, 1459−
1466. (e) Arunkumar, A.; Vijayababu, M. R.; Venkataraman, P.;
Senthilkumar, K.; Arunakaran, J. Chemoprevention of Rat Prostate
Carcinogenesis by Diallyl Disulfide, an Organosulfur Compound of
Garlic. Biol. Pharm. Bull. 2006, 29, 375−379. (f) Taori, K.; Paul, V. J.;
Luesch, H. Structure and Activity of Largazole, a Potent
Antiproliferative Agent from the Floridian Marine Cyanobacterium
Symploca sp. J. Am. Chem. Soc. 2008, 130, 1806−1807.
Dienes with a Pd−PHOX Catalyst. J. Am. Chem. Soc. 2017, 139,
7180−7183. (j) Adamson, N. J.; Wilbur, K. C. E.; Malcolmson, S. J.
Enantioselective Intermolecular Pd-Catalyzed Hydroalkylation of
Acyclic 1,3-Dienes with Activated Pronucleophiles. J. Am. Chem.
Soc. 2018, 140, 2761−2764. (k) Schmidt, V. A.; Kennedy, C. R.;
Bezdek, M. J.; Chirik, P. J. Selective [1,4]-Hydrovinylation of 1,3-
Dienes with Unactivated Olefins Enabled by Iron Diimine Catalysts. J.
Am. Chem. Soc. 2018, 140, 3443−3453. (l) Cheng, L.; Li, M.-M.;
Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. Nickel(0)-Catalyzed Hydro-
alkylation of 1,3-Dienes with Simple Ketones. J. Am. Chem. Soc. 2018,
140, 11627−11630.
(7) (a) Pritzius, A. B.; Breit, B. Asymmetric Rhodium-Catalyzed
Addition of Thiols to Allenes: Synthesis of Branched Allylic
Thioethers and Sulfones. Angew. Chem., Int. Ed. 2015, 54, 3121−
3125. (b) Pritzius, A. B.; Breit, B. Z-Selective Hydrothiolation of
Racemic 1,3-Disubstituted Allenes: An Atom-Economic Rhodium-
Catalyzed Dynamic Kinetic Resolution. Angew. Chem., Int. Ed. 2015,
54, 15818−15822. (c) Brouwer, C.; Rahaman, R.; He, C. Gold(I)-
Mediated Hydrothiolation of Conjugated Olefins. Synlett 2007, 2007,
1785−1789.
(4) Trost, B. M. The atom economy–a search for synthetic
efficiency. Science 1991, 254, 1471−1477.
(5) For select hydrothiolations of alkenes, see: (a) Cabrero-
Antonino, J. R.; Leyva-Perez, A.; Corma, A. Iron-Catalysed
Markovnikov Hydrothiolation of Styrenes. Adv. Synth. Catal. 2012,
354, 678−687. (b) Tamai, T.; Ogawa, A. Regioselective Hydro-
thiolation of Alkenes Bearing Heteroatoms with Thiols Catalyzed by
Palladium Diacetate. J. Org. Chem. 2014, 79, 5028−5035. (c) Tamai,
T.; Fujiwara, K.; Higashimae, S.; Nomoto, A.; Ogawa, A. Gold-
Catalyzed Anti-Markovnikov Selective Hydrothiolation of Unactivated
Alkenes. Org. Lett. 2016, 18, 2114−2117. (d) Yi, H.; Song, C.; Li, Y.;
Pao, C.-W.; Lee, J.-F.; Lei, A. Single-Electron Transfer between CuX2
and Thiols Determined by Extended X-Ray Absorption Fine Structure
Analysis: Application in Markovnikov-Type Hydrothiolation of
Styrenes. Chem. - Eur. J. 2016, 22, 18331−18334. (e) Mosaferi, E.;
Ripsman, D.; Stephan, D. W. The air-stable carbocation salt
[(MeOC6H4)CPh2][BF4] in Lewis acid catalyzed hydrothiolation of
alkenes. Chem. Commun. 2016, 52, 8291−8293. (f) Teders, M.;
(8) Yang, X.-H.; Davison, R. T.; Dong, V. M. Catalytic Hydro-
thiolation: Regio- and Enantioselective Coupling of Thiols and
Dienes. J. Am. Chem. Soc. 2018, 140, 10443−10446.
(10) Kennemur, J. L.; Kortman, G. D.; Hull, K. L. Rhodium-
Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and
Imines. J. Am. Chem. Soc. 2016, 138, 11914−11919.
(11) (a) Wu, J. Y.; Stanzl, B. N.; Ritter, T. A Strategy for the
Synthesis of Well-Defined Iron Catalysts and Application to
Regioselective Diene Hydrosilylation. J. Am. Chem. Soc. 2010, 132,
̈
13214−13216. (b) Parker, S. E.; Borgel, J.; Ritter, T. 1,2-Selective
̈
́
́
Henkel, C.; Anhauser, L.; Strieth-Kalthoff, F.; Gomez-Suarez , A.;
Kleinmans, R.; Kahnt , A.; Rentmeister , A.; Guldi , D.; Glorius, F. The
energy-transfer-enabled biocompatible disulfide−ene reaction. Nat.
Chem. 2018, 10, 981−988. (g) Kristensen, S. K.; Laursen, S. L. R.;
Taarning, E.; Skrydstrup, T. Ex Situ Formation of Methanethiol:
Application in the Gold(I)-Promoted Anti-Markovnikov Hydro-
thiolation of Olefins. Angew. Chem., Int. Ed. 2018, 57, 13887−
Hydrosilylation of Conjugated Dienes. J. Am. Chem. Soc. 2014, 136,
4857−4860.
(12) For examples of oxidative addition of thiols with Rh catalysts,
see: (a) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. Highly Regio-
and Stereocontrolled Synthesis of Vinyl Sulfides via Transition-Metal-
Catalyzed Hydrothiolation of Alkynes with Thiols. J. Am. Chem. Soc.
1999, 121, 5108−5114. (b) Shoai, S.; Bichler, P.; Kang, B.; Buckley,
H.; Love, J. A. Catalytic Alkyne Hydrothiolation with Alkanethiols
using Wilkinson’s Catalyst. Organometallics 2007, 26, 5778−5781.
(c) Han, L.; Li, Y.; Liu, T. Theoretical investigation of the impact of
ligands on the regiodivergent Rh-catalyzed hydrothiolation of allyl
amines. Dalton Trans. 2018, 47, 150−158 and ref 10. .
́
13891. For a review, see: (h) Castarlenas, R.; Di Giuseppe, A.; Perez-
Torrente, J. J.; Oro, L. A. The Emergence of Transition-Metal-
Mediated Hydrothiolation of Unsaturated Carbon−Carbon Bonds: A
Mechanistic Outlook. Angew. Chem., Int. Ed. 2013, 52, 211−222.
(6) For select hydrofunctionalizations of 1,3-dienes, see: (a) Zbieg, J.
R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Enantioselective C-
H Crotylation of Primary Alcohols via Hydrohydroxyalkylation of
Butadiene. Science 2012, 336, 324−327. (b) Chen, Q.-A.; Kim, D. K.;
Dong, V. M. Regioselective Hydroacylation of 1,3-Dienes by Cobalt
Catalysis. J. Am. Chem. Soc. 2014, 136, 3772−3775. (c) Saini, V.;
O’Dair, M.; Sigman, M. S. Synthesis of Highly Functionalized Tri- and
Tetrasubstituted Alkenes via Pd-Catalyzed 1,2-Hydrovinylation of
Terminal 1,3-Dienes. J. Am. Chem. Soc. 2015, 137, 608−611.
(d) Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.;
Meek, S. J. Chiral Pincer Carbodicarbene Ligands for Enantioselective
Rhodium-Catalyzed Hydroarylation of Terminal and Internal 1,3-
Dienes with Indoles. J. Am. Chem. Soc. 2017, 139, 15580−15583.
(e) Jing, S. M.; Balasanthiran, V.; Pagar, V.; Gallucci, J. C.; RajanBabu,
T. V. Catalytic Enantioselective Hetero-dimerization of Acrylates and
1,3-Dienes. J. Am. Chem. Soc. 2017, 139, 18034−18043. (f) Yang, X.-
H.; Lu, A.; Dong, V. M. Intermolecular Hydroamination of 1,3-Dienes
To Generate Homoallylic Amines. J. Am. Chem. Soc. 2017, 139,
14049−14052. (g) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.;
Ye, J.- H.; Zhang, Z.; Li, J.; Yu, D.-G. Highly Regio- and
Enantioselective Copper-Catalyzed Reductive Hydroxymethylation
of Styrenes and 1,3-Dienes with CO2. J. Am. Chem. Soc. 2017, 139,
17011−17014. (h) Thullen, S. M.; Rovis, T. A Mild Hydro-
aminoalkylation of Conjugated Dienes Using a Unified Cobalt and
Photoredox Catalytic System. J. Am. Chem. Soc. 2017, 139, 15504−
15508. (i) Adamson, N. J.; Hull, E.; Malcolmson, S. J. Enantio-
selective Intermolecular Addition of Aliphatic Amines to Acyclic
(13) For the same sterically preferred 1,4-insertion into an Ir−H,
see: Nguyen, K. D.; Herkommer, D.; Krische, M. J. Enantioselective
Formation of All-Carbon Quaternary Centers via C−H Functional-
ization of Methanol: Iridium-Catalyzed Diene Hydrohydroxymethy-
lation. J. Am. Chem. Soc. 2016, 138, 14210−14213.
(14) Xantphos is a hemilabile ligand that can coordinate through the
oxygen atom: Ren, P.; Pike, S. D.; Pernik, I.; Weller, A. S.; Willis, M.
C. Rh−POP Pincer Xantphos Complexes for C−S and C−H
Activation. Implications for Carbothiolation Catalysis. Organometallics
2015, 34, 711−723.
(15) For the formation of a disulfide under iron-catalyzed alkene
hydrothiolation, see ref 5a.
(16) For Rh−H resonances, see: Di Giuseppe, A.; Castarlenas, R.;
́
Perez-Torrente, J. J.; Crucianelli, M.; Polo, V.; Sancho, R.; Lahoz, F.
J.; Oro, L. A. Ligand-Controlled Regioselectivity in the Hydro-
thiolation of Alkynes by Rhodium N-Heterocyclic Carbene Catalysts.
J. Am. Chem. Soc. 2012, 134, 8171−8183. See also refs 10 and 12a.
(17) For reviews, see: (a) Koschker, P.; Breit, B. Branching Out:
Rhodium-Catalyzed Allylation with Alkynes and Allenes. Acc. Chem.
Res. 2016, 49, 1524−1536. (b) Haydl, A. M.; Breit, B.; Liang, T.;
Krische, M. J. Alkynes as Electrophilic or Nucleophilic Allylmetal
Precursors in Transition-Metal Catalysis. Angew. Chem., Int. Ed. 2017,
56, 11312−11325. For select papers, see: (c) Chen, Q.-A.; Chen, Z.;
Dong, V. M. Rhodium-Catalyzed Enantioselective Hydroamination of
Alkynes with Indolines. J. Am. Chem. Soc. 2015, 137, 8392−8395.
(d) Yang, X.-H.; Dong, V. M. Rhodium-Catalyzed Hydrofunctional-
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX