1584
A. Kumar et al. / Tetrahedron Letters 51 (2010) 1582–1584
15. (a) Wolf, C.; Lerebours, R. J. Org. Chem. 2003, 68, 7551; (b) Bumagin, N. A.;
Sukhomlinova, L. I.; Tolstaya, T. P.; Beletskaya, I. P. Russ. J. Org. Chem. 1994, 30,
1605.
16. (a) Inoue, Y.; Araki, K.; Shiraishi, S. Bull. Chem. Soc. Jpn. 1991, 64, 3079; (b)
Deroose, F. D.; De Clercq, P. J. Tetrahedron Lett. 1994, 35, 2615; (c) Butler, R. N.;
Coyne, A. G.; Cunningham, W. J.; Burke, L. A. J. Chem. Soc., Perkin Trans. 2 2002,
1807.
out of the droplets due to hydrophobic nature of their interior
(Fig. 2).
The high solubilizing capacity of non-ionic Triton X-100 is re-
lated to its hydrophobic character, as can be evaluated from its
critical micelle concentration (2.5 Â 10À4 M)28 and hydrophile–
lipophile balance (13.5)29 values. Triton X-100 solubilizes the
nucleophilic reagent, as well as enhances the nucleophilicity of
the counterions. Besides, the surfactant properties of Triton
X-100 improve the reaction kinetics by increasing interfacial area.
The optimization reveals that Triton X-100 gives the best results
hence the generality of this procedure has been examined. A series
of aldehyde and amines with 2-naphthol was carried out using Tri-
ton X-100 as surfactant catalyst in water.30,31 The results are
shown in (Table 2). All the aromatic aldehydes reacted almost
equally well to afford Betti base (4a–n) in excellent yields.
In conclusion, we have developed an efficient non-ionic surfac-
tant, Triton X-100 catalyzed multicomponent Mannich-type reac-
tions for the synthesis of Betti base from aldehydes, secondary
amines, and 2-naphthol in water. Triton X-100 forms stable colloi-
dal medium which plays an essential role in acceleration of the
reactions in water.
17. (a) Yong, L.; Butenschoen, H. Chem. Commun. 2002, 2852; (b) Kusama, H.;
Yamabe, H.; Iwasawa, N. Org.
Lett. 2002, 4, 2569.
18. (a) Betti, M. Gazz. Chim. Ital. 1900, 30, 310; (b) Betti, M. Org. Synth. Coll. Vol.
1941, I, 381; (c) Ghandi, M.; Olyaei, A.; Raoufmoghaddam, S. Synth. Commun.
2008, 38, 4125; (d) Saidi, M. R.; Azizi, N.; Naimi-Jamal, M. R. Tetrahedron Lett.
2001, 42, 8111; (e) Jha, A.; Paul, K. N.; Trikha, S.; Cameron, T. S. Can. J. Chem.
2006, 84, 843.
19. Lu et al Tetrahedron Lett. 2002, 43, 8367–8369.
20. Gerlach, et al. U.S. Patent 7,202,242 B2, 2007.
21. Lu, J.; Xu, X.; Wang, C.; He, J.; Hu, Y.; Hu, H. Tetrahedron Lett. 2002, 132, 875.
22. Sharifi, A.; Mirzaei, M.; Naimi-Jamal, M. R. Montash. Chem. 2001, 132, 875.
23. Katritzky et al J. Org. Chem. 1999, 64, 6071–6075.
24. (a) Kumar, A.; Maurya, R. A. Tetrahedron 2008, 64, 3471–3482; (b) Kumar, A.;
Maurya, R. A. Tetrahedron Lett. 2008, 49, 5471–5474; (c) Kumar, A.; Sharma, S.;
Maurya, R. A. Tetrahedron Lett. 2009, 43, 5937–5940; (d) Kumar, A.; Kumar, M.;
Gupta, M. K. Tetrahedron Lett. 2009, 50, 7024–7027.
25. Bhattacharya, A.; Purohit, V.; Rinaldi, F. Org. Process Res. Dev. 2003, 7, 254.
26. (a) Hinze, W. L.; Pramauro, E. Crit. Rev. Anal. Chem. 1993, 24, 133–177; (b) Jones,
M. N. Int. J. Pharm. 1999, 177, 137–159.
27. Zeng, X.; Osseo-Asare, K. J. Colloid Interface Sci. 2004, 272, 298–307.
28. Griffin, W. C. J. Soc. Cosmet. Chem. 1949, 1, 311–326.
The process is high yielding, eco-friendly, and demonstrates the
value of the non-ionic surfactant-mediated organic solvent-free
methodology in organic synthesis.
29. Neugebauer, J. A Guide to the Properties and Uses of Detergents in Biology and
Biochemistry; Calbiochem-Novabiochem Int: La Jolla, 1994.
30. General procedure for the synthesis of compound (4). In a typical experiment, the
aldehyde (5 mmol), b-naphthol (3.8 mmol) and pyrolidine (3.8 mmol) were
taken in a mixture of Triton X-100 (5 mol %) and water (2 ml) to a round-
bottomed flask. The reaction mixture was vigorously stirred at room
temperature. After the reaction was completed (monitored by TLC) the
reaction mixture was extracted with ethylacetate, the aqueous-phase was
back extracted with ethylacetate (3 Â 15 ml). The combined organic layers
were dried over anhydrous Na2SO4, filtered, and concentrated under reduced
pressure to leave the crude product as a white solid which was purified by
silica gel column chromatography (EtoAc/hexane mixtures).
Acknowledgments
M.K.G. and M.K. are thankful to CSIR-UGC New Delhi, for the
award of a SRF. The authors also acknowledge SAIF-CDRI for pro-
viding spectral and analytical data.
31. Analytical data for few representative compounds. 1-(Phenyl(pyrrolidin-1-
yl)methyl)naphthalen-2-ol (4a) white solid; mp 178–179 °C. 1H NMR (CDCl3,
300 MHz): d = 1.85 (br s, 4H), 2.43 (br s, 4H), 5.12 (s, 1H), 7.13–7.38 (m, 6H,
ArH), 7.58–7.70 (m, 4H), 7.86 (d, J = 9 Hz,1H), 13.82 (br s, 1H), 13C NMR
(50 MHz, CDCl3) d = 23.81, 54.20, 71.25, 120.20, 120.31, 121.54, 122.80, 126.81,
127.25, 128.01, 128.26, 128.91, 129.0, 129.1, 129.91, 129.30, 132.32, 141.71,
156.00. IR (KBr): 3120, 3058, 2972, 2843, 1621, 1453, 1239, 750 cmÀ1. ESIMS:
m/z 304 (M+H)+. 1-((3-Bromophenyl)(diethylamino)methyl)naphthalen-2-ol (4e)
white solid; mp 157 °C. 1H NMR (CDCl3, 300 MHz) d = 1.02 (t, J = 7.05 Hz, 6H,
CH3), 2.74 (br, d, J = 6.42 Hz, 4H, –NCH2), 5.39 (s, 1H, CH), 7.09–7.14 (m, 2H,
ArH), 7.20–7.24 (m, 1H, ArH), 7.30–7.33 (m, 1H, ArH), 7.36–7.42 (m, 1H, ArH),
7.58–7.60 (d, J = 7.62 Hz, 1H, ArH), 7.67–7.77 (m, 2H, ArH), 7.81 (d, J = 8.58 Hz,
2H, ArH), 14.01 (s, 1H, OH). 13C NMR (CDCl3, 300 MHz) d = 9.91, 42.86, 66.97,
115.89, 120.19, 120.58, 122.44, 122.65, 126.60, 127.64, 128.62, 129.05, 129.68,
130.38, 131.07, 131.87, 132.03, 142.41, 156.02. IR (KBr): 3140, 3061, 2965,
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Li, C.-J. Chem. Rev. 1993, 93, 2023; (b)Organic Synthesis in Water; Grieco, P. A.,
Ed.; Blacky Academic and Professional: London, 1998.
2. Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816–7817.
3. Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B.
Angew. Chem. 2005, 117, 3339. Angew. Chem., Int. Ed. 2005, 44, 3275.
4. Copley, S. D.; Knowles, J. J. Am. Chem. Soc. 1987, 109, 5008.
5. For a review, see: (a) Mestres, R. Green Chem. 2004, 6, 583; (b) Comisar, C. M.;
Savage, P. E. Green Chem. 2004, 6, 227.
6. (a) Petrier, C.; Luche, J. L. J. Org. Chem. 1985, 50, 910; (b) Petrier, C.; Einhorn, J.;
Luche, J. L. Tetrahedron Lett. 1985, 26, 1449; (c) Uneyama, K.; Kamaki, N.;
Moriya, A.; Torii, S. J. Org. Chem. 1985, 50, 5396.
7. (a) Chan, T. H.; Li, C. J.; Lee, M. C.; Wei, Z. Y. Can. J. Chem. 1994, 72, 1181; (b)
Chattopadhyay, A.; Salaskar, A. Synthesis 2000, 561; (c) Zhang, J.-M.; Zhang, Y.-
M. Chin. J. Chem. 2002, 20, 111; (d) Shen, Z.; Zhang, J.; Zou, H.; Yang, M.
Tetrahedron Lett. 1997, 38, 2733.
8. Li, H. J.; Tian, H. Y.; Chen, Y. J.; Wang, D.; Li, C. J. Chem. Commun. 2002, 2994.
9. Meciarova, M.; Toma, S.; Babiak, P. Chem. Pap. 2001, 55, 302.
10. (a) Russell, M. G.; Warren, S. Tetrahedron Lett. 1998, 39, 7995; (b) Gartner, Z. J.;
Kanan, M. W.; Liu, D. R. Angew. Chem., Int. Ed. 2002, 41, 1796.
.
2839, 1617, 1450, 1235, 749 cmÀ1 ESIMS: m/z 384 (M+H)+. 1-((4-
Chlorophenyl)(dimethylamino)methyl)naphthalen-2-ol (4h) white solid; mp
128–130 °C. 1H NMR (CDCl3, 300 MHZ) d = 2.34 (s, 6H, NCH3), 4.95 (s, 1H,
CH), 7.08–7.45 (m, 4H, ArH), 7.50–7.53 (m, 3H, ArH), 7.65–7.83 (m, 3H, ArH),
9.98 (s, 1H, ArH). 13C NMR (CDCl3, 75 MHz) d = 41.54, 72.76, 116.32, 119.85,
121.14, 122.38, 126.42, 127.70, 128.48, 128.67, 128.83, 128.89, 129.75, 131.21,
142.37, 155.20. IR (KBr): 3129, 3061, 2976, 2848, 1629, 1462, 1240, 758 cmÀ1
.
ESIMS: m/z 312 (M+H)+. 1-((2-Methoxyphenyl)(piperidin-1-yl)methyl)naph-
thalen-2-ol (4k) mp 181 °C, white solid; 1H NMR (CDCl3, 300 MHz) d = 1.42–
1.73 (m, 6H, -CH2), 2.07–2.25 (m, 2H, –NCH2), 2.25 (d, J = 4.35 Hz, 1H, –(NCH),
3.27 (d, J = 11.7 Hz, 1H, –(NCH), 3.99 (s, 3H -OCH3), 5.81 (s, 1H, CH), 6.81 (t,
J = 7.56 Hz, 1H, ArH), 6.85 (d, J = 8.16 Hz, 1H, ArH), 7.11–7.21 (m, 3H, ArH),
7.26–7.32 (m, 1H, ArH), 7.46–7.51 (m, 1H, ArH), 7.61–7.66 (m, 2H, ArH), 7.75
(d, J = 8.58 Hz, 1H, ArH). 13C NMR (CDCl3, 75 MHz) d = 24.14, 25.93, 26.31,
49.37, 54.76, 55.55, 62.15, 110.33, 116.67, 119.93, 121.43, 121.48, 122.15,
126.19, 127.61, 128.42, 128.49 128.53, 128.87, 128.92, 130.00, 132.89, 156.45,
´
11. (a) Auge, J.; Lubin, N.; Lubineau, A. Tetrahedron Lett. 1994, 35, 7947; (b) Luo, S.;
Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 555; (c) Basavaiah, D.;
Krishnamacharyulu, M.; Rao, J. Synth. Commun. 2000, 30, 2061.
12. (a) Akiyama, T.; Takaya, J.; Kagoshima, H. Synlett 1999, 9, 1426; (b) Manabe, K.;
Kobayashi, S. Org. Lett. 1999, 1, 1965.
13. (a) Bumagin, N. A.; Bykov, V. V.; Sukhomlinova, L. I.; Tolstaya, T. P.; Beletskaya,
I. P. J. Organomet. Chem. 1995, 486, 259; (b) Schoenfelder, D.; Fischer, K.;
Schmidt, M.; Nuyken, O.; Weberskirch, R. Macromolecules 2005, 38, 254.
14. (a) Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Org. Lett. 2000, 2, 2385; (b)
Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973; For a review, see: (c) Li, C.-
J. Angew. Chem., Int. Ed. 2003, 42, 4856.
156.77 ppm. IR (KBr): 3131, 3054, 2961, 2854, 1652, 1449, 1238, 747 cmÀ1
.
ESIMS: m/z 348 (M+H)+. 1-((4-(Dimethylamino)phenyl)(piperidin-1-yl)methyl)-
naphthalen-2-ol (4n) Oil, 1H NMR (CDCl3, 200 MHz) d = 1.25 (br s, 6H, CH2), 1.66
(br s, 4H, –NCH2), 2.85 (s, 6H, NCH3), 4.98 (s, 1H, CH), 6.65 (d, J = 8.00 Hz, 2H,
ArH), 7.11–7.68 (m, 8H, ArH), 7.80 (d, J = 8.46 Hz, 1H, ArH), 14.18 (s, 1H, OH).
13C NMR (CDCl3, 50 MHz) d = 4.24, 26.11, 29.68, 40.04, 40.34, 71.46, 110.98,
112.34, 116.72, 119.90, 121.22, 122.10, 126.16, 127.09, 128.61, 128.74, 128.92,
129.90, 131.97, 132.43, 149.96, 155.44. IR (neat): 3119, 3052, 2969, 2848,
1628, 1461, 1232, 745 cmÀ1. ESIMS: m/z 361 (M+H)+.