intermediates, which further reacted with 1,3-dicarbonyl
compounds to afford unsymmetrical 1,4-enediones via a
common pathway (Scheme 2).
Scheme 1.
Strategies of Domino Reactiona
Scheme 2. Proposal: Preparation of Unsymmetrical
1,4-Enediones via the Focusing Domino Strategy
a Intramolecular domino reaction (Path I); Intermolecular domino
reaction (Path II); multicomponent domino reaction (Path III); self-sorting
domino reaction (Path IV); focusing domino reaction (Path V).
On the basis of our previous studies,2g-i we initially
examined the feasibility of the strategy by reaction of
acetophenone 1a with ethyl benzoylacetate 3a. When 1a and
3a were in the presence of copper(II) oxide and iodine in
DMSO at 70 °C for 12 h, the desired 1,4-enedione 4aa was
obtained in 88% yield (Scheme 3). The efficient formation
The 1,4-enedione framework is frequently found in
bioactive natural products and medicinal compounds.4 In
addition, by virtue of their multifunctional composition,
1,4-enediones could serve as versatile precursors for
heterocycle synthesis,5 Diels-Alder cycloaddition,6 Michael
addition,7 as well as many other useful transformations.8
Although a variety of approaches have been developed
for the synthesis of this skeleton,9 a general and practical
methodology is still needed for chemists to construct 1,4-
enediones from simple and readily available starting
materials. In our recent reports, we proposed a novel self-
sorting domino strategy for the efficient construction of
R-methylthio-substituted 1,4-enediones from readily avail-
able methyl ketones, wherein R-ketoaldehydes were
generated in situ.2g-i However, the direct synthesis of
unsymmetrical 1,4-enediones from two different methyl
ketones has been proved extremely difficult.2h We wondered
whether it would be possible for simple methyl ketones or
terminal aryl alkenes to focus on the same R-ketoaldehyde
Scheme 3.
Scope of Methyl Ketonesa
(4) (a) Abou-Gazar, H.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Khan,
I. A. Phytochemistry 2004, 65, 2499. (b) Dura´n, R.; Zub´ıa, E.; Ortega, M. J.;
Naranjo, S.; Salva´, J. Tetrahedron 1999, 55, 13225. (c) Binder, R. G.;
Benson, M. E.; Flath, R. A. Phytochemistry 1989, 28, 2799. (d) Fouad,
M.; Edrada, R. A.; Ebel, R.; Wray, V.; Mu¨ller, W. E. G.; Lin, W. H.;
Proksch, P. J. Nat. Prod. 2006, 69, 211. (e) Ballini, R.; Astolfi, P. Liebigs
Ann. 1996, 1879. (f) Nguyen, C.; Teo, J. L.; Matsuda, A.; Eguchi, M.; Chi,
E. Y.; Henderson, W. R.; Kahn, M. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 1169.
(5) (a) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of
Heterocycles; Wiley-VCH: Weinheim, 2003. (b) Rao, H. S. P.; Jothilingam,
S. J. Org. Chem. 2003, 68, 5392.
(6) (a) Allen, J. G.; Danishefsky, S. J. J. Am. Chem. Soc. 2000, 123,
351. (b) Danishefsky, S.; Kahn, M. Tetrahedron Lett. 1981, 22, 489. (c)
Lenz, G. R. J. Org. Chem. 1979, 44, 1597.
(7) (a) Ballini, R.; Bosica, G.; Fiorini, D.; Gil, M. V.; Petrini, M. Org.
Lett. 2001, 3, 1265. (b) Ballini, R.; Bosica, G. Tetrahedron 1995, 51, 4213.
(8) (a) D’auria, M.; Piancatelli, G.; Scettri, A. Synthesis 1980, 245. (b)
DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130,
11546.
(9) For selected examples, see: (a) Yu, J. Q.; Corey, E. J. J. Am. Chem.
Soc. 2003, 125, 3232. (b) Vassilikogiannakis, G.; Margaros, I.; Montagnon,
T. Org. Lett. 2004, 6, 2039. (c) Crone, B.; Kirsch, S. F. Chem. Commun.
2006, 764. (d) Runcie, K. A.; Taylor, R. J. K. Chem. Commun. 2002, 974.
(e) Echavarren, A. M.; Perez, M.; Castano, A. M.; Cuerva, J. M. J. Org.
Chem. 1994, 59, 4179. (f) Ballini, R.; Bosica, G. J. Org. Chem. 1994, 59,
5466. (g) Bonete, P.; Na´jera, C. Tetrahedron 1995, 51, 2763. (h) Prakash,
O.; Batra, A.; Chaudhri, V.; Prakash, R. Tetrahedron Lett. 2005, 46, 2877.
(i) Ronsheim, M. D.; Zercher, C. K. J. Org. Chem. 2003, 68, 4535. (j)
Wasnaire, P.; de Merode, T.; Marko´, I. E. Chem.Commun. 2007, 4755. (k)
Cecere, M.; Gozzo, F.; Malandra, A.; Mirenna, L. Chem. Abstr. 1984, 100,
139119x; Ger. Offen 3,319,990, 1983.
a The reaction was carried out with 1.0 equiv of 1, 1.0 equiv of 3a, 1.1
equiv of CuO and 1.1 equiv of I2 in DMSO at 70 °C. Isolated yield. E:Z
1
ratio determined by H NMR.
Org. Lett., Vol. 12, No. 8, 2010
1857