Journal of the American Chemical Society
Page 4 of 6
Yamamura, T.; Kitamura, M. Desymmetric hydrogenation of a meso-
Corresponding Author
cyclic acid anhydride toward biotin synthesis. Tetrahedron 2011, 67,
10006-10010. (d) Liu, T.-L.; Li, W.; Geng, H.; Wang, C.-J.; Zhang, X.
Catalytic Enantioselective Desymmetrization of Meso Cyclic
Anhydrides via Iridium-Catalyzed Hydrogenation. Org. Lett. 2013, 15,
1740-1743. (e) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.;
Bergens, S. H. Base-Catalyzed Bifunctional Addition to Amides and
1
2
3
4
5
6
7
8
Email: wenjl@sustech.edu.cn;
Email: zhangxm@sustech.edu.cn
Author Contributions
†Cai You and Xiuxiu Li contributed equally to this work.
Notes
Imides at Low Temperature.
A New Pathway for Carbonyl
The authors declare no competing financial interests.
Hydrogenation. J. Am. Chem. Soc. 2013, 135, 8578-8584. (f) Hong, Y.;
Chen, J.; Zhang, Z.; Liu, Y.; Zhang, W. Ru-Catalyzed Asymmetric
Hydrogenative/Transfer Hydrogenative Desymmetrization of Meso-
Epoxy Diketones. Org. Lett. 2016, 18, 2640-2643. (g) Fernández-Pérez,
H.; Lao, J. R.; Vidal-Ferran, A. Stereoselective Rh-Catalyzed
Hydrogenative Desymmetrization of Achiral Substituted 1,4-Dienes.
Org. Lett. 2016, 18, 2836-2839. (h) Gong, Q.; Wen, J.; Zhang, X.
Desymmetrization of cyclic 1,3-diketones via Ircatalyzed
hydrogenation: an efficient approach to cyclic hydroxy ketones with a
chiral quaternary carbon. Chem. Sci. 2019, 10, 6350-6353.
(5) For selected reviews, see: (a) Cui, X.; Burgess, K. Catalytic
homogeneous asymmetric hydrogenations of largely unfunctionalized
alkenes. Chem. Rev. 2005, 105, 3272-3296. (b) Xie, J.-H.; Zhu, S.-F.;
Zhou, Q.-L. Transition metal-catalyzed enantioselective hydrogenation
of enamines and imines. Chem. Rev. 2011, 111, 1713-1760. (c) Xie, J.-
H.; Zhu, S.-F.; Zhou, Q.-L. Recent advances in transition metal-
catalyzed enantioselective hydrogenation of unprotected enamines.
Chem. Soc. Rev. 2012, 41, 4126-4139. (d) Chen, Q.-A.; Ye, Z.-S.; Duan,
Y.; Zhou, Y.-G. Homogeneous palladium-catalyzed asymmetric
hydrogenation. Chem. Soc. Rev. 2013, 42, 497-511. (e) Verendel, J. J.;
Pamies, O.; Dieguez, M.; Andersson, P. G. Asymmetric hydrogenation
of olefins using chiral crabtree-type catalysts: Scope and limitations.
Chem. Rev. 2014, 114, 2130-2169. (f) Zhang, Z.; Butt, N. A.; Zhang,
W. Asymmetric hydrogenation of nonaromatic cyclic substrates. Chem.
Rev. 2016, 116, 14769-14827.
(6) For selected examples, see: (a) Garbe, M.; Junge, K.; Walker,
S.; Wei, Z.; Jiao, H.; Spannenberg, A.; Bachmann, S.; Scalone, M.;
Beller, M. Manganese(I)-Catalyzed Enantioselective Hydrogenation of
Ketones Using a Defined Chiral PNP Pincer Ligand. Angew. Chem.,
Int. Ed. 2017, 56, 11237-11241. (b) Zhang, L.; Tang, Y.; Han, Z.; Ding,
K. Lutidine-Based Chiral Pincer Manganese Catalysts for
Enantioselective Hydrogenation of Ketones. Angew. Chem., Int. Ed.
2019, 58, 4973-4977. (c) Zirakzadeh, A.; de Aguiar, S. R. M. M.;
Stöger, B.; Widhalm, M.; Kirchner, K. Enantioselective Transfer
Hydrogenation of Ketones Catalyzed by a Manganese Complex
Containing an Unsymmetrical Chiral PNP’ Tridentate Ligand.
ChemCatChem 2017, 9, 1744-1748. (d) Demmans, K. Z.; Olson, M. E.;
Morris, R. H. Asymmetric Transfer Hydrogenation of Ketones with
Well-Defined Manganese(I) PNN and PNNP Complexes
Organometallics 2018, 37, 4608-4618.
(7) For reviews, see: (a) Morris, R. H. Asymmetric hydrogenation,
transfer hydrogenation and hydrosilylation of ketones catalyzed by iron
complexes. Chem. Soc. Rev. 2009, 38, 2282-2291. (b) Li, Y. Y.; Yu, S.
L.; Shen, W. Y.; Gao, J. X. Iron-, Cobalt-, and Nickel-Catalyzed
Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation
of Ketones. Acc. Chem. Res. 2015, 48, 2587-2598. (c) Morris, R. H.
Exploiting Metal-Ligand Bifunctional Reactions in the Design of Iron
Asymmetric Hydrogenation Catalysts. Acc. Chem. Res. 2015, 48,
1494-1502. (d) Chirik, P. J. Iron- and Cobalt-Catalyzed Alkene
Hydrogenation: Catalysis with Both Redox-Active and Strong Field
Ligands. Acc. Chem. Res. 2015, 48, 1687-1695. (e) Zhang, Z.; Butt, N.
A.; Zhou, M.; Liu, D.; Zhang, W. Asymmetric Transfer and Pressure
Hydrogenation with Earth-Abundant Transition Metal Catalysts. Chin.
J. Chem. 2018, 36, 443-454.
ACKNOWLEDGMENT
We are grateful to the financial support from Shenzhen Nobel Prize
Scientists Laboratory Project (C17783101), SZDRC Discipline
Construction Program and the Shenzhen Commission of Science,
Technology and Innovation (JSGG20160608140847864).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) For reviews, see: (a) Corey, E. J.; Guzman-Perez, A. The
Catalytic Enantioselective Construction of Molecules with Quaternary
Carbon Stereocenters. Angew. Chem., Int. Ed. 1998, 37, 388-401. (b)
Douglas, C. J.; Overman, L. E. Catalytic Asymmetric Synthesis of All-
Carbon Quaternary Stereocenters. Proc. Natl. Acad. Sci. U. S. A. 2004,
101, 5363-5367. (c) Trost, B. M.; Jiang, C. Catalytic Enantioselective
Construction of All-Carbon Quaternary Stereocenters. Synthesis 2006,
369-396. (d) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N.
Enantioselective Catalytic Formation of Quaternary Stereogenic
Centers. Eur. J. Org. Chem. 2007, 2007, 5969-5994. (e) Bella, M.;
Gasperi, T. Organocatalytic Formation of Quaternary Stereocenters.
Synthesis 2009, 1583-1614. (f) Quasdorf, K. W.; Overman, L. E.
Catalytic Enantioselective Synthesis of Quaternary Carbon
Stereocenters. Nature 2014, 516, 181-191. (g) Liu, Y.; Han, S.-J.; Liu,
W.; Stoltz, B. M. Catalytic Enantioselective Construction of
Quaternary Stereocenters: Assembly of Key Building Blocks for the
Synthesis of Biologically Active Molecules. Acc. Chem. Res. 2015, 48,
740-751. (h) Xu, P.-W.; Yu, J.-S.; Chen, C.; Cao, Z.-Y.; Zhou, F.; Zhou,
J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon
Stereocenters. ACS Catal. 2019, 9, 1820-1882.
(2) For reviews, see: (a) Kalstabakken, K. A.; Harned, A. M.
Asymmetric transformations of achiral 2,5-cyclohexadienones.
Tetrahedron 2014, 70, 9571-9585. (b) Petersen, K. S. Nonenzymatic
enantioselective synthesis of all-carbon quaternary centers through
desymmetrization. Tetrahedron Lett. 2015, 56, 6523-6535. (c) Zeng,
X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Catalytic
Enantioselective Desymmetrization Reactions to All-Carbon
Quaternary Stereocenters. Chem. Rev. 2016, 116, 7330-7396.
(3) For selected examples on catalytic enantioselective
desymmetrization reactions of 4,4-Disubstituted cyclohexadienones,
see: (a) Hayashi, Y.; Gotoh, H.; Tamura, T.; Yamaguchi, H.; Masui,
R.; Shoji, M. Cysteine-Derived Organocatalyst in
a Highly
Enantioselective Intramolecular Michael Reaction. J. Am. Chem. Soc.
2005, 127, 16028-16029. (b) Du, J.-Y.; Zeng, C.; Han, X.-J.; Qu, H.;
Zhao, X.-H.; An, X.-T.; Fan, C.-A. Asymmetric Total Synthesis of
Apocynaceae Hydrocarbazole Alkaloids (+)-Deethylibophyllidine and
(+)-Limaspermidine. J. Am. Chem. Soc. 2015, 137, 4267-4273.
Examples on desymmetric reduction of cyclohexadienones by
hydrosilylation, see: (c) Naganawa, Y.; Kawagishi, M.; Ito, J.;
Nishiyama, H. Asymmetric Induction at Remote Quaternary Centers of
Cyclohexadienones by Rhodium-Catalyzed Conjugate Hydrosilylation.
Angew. Chem., Int. Ed. 2016, 55, 6873-6876. (d) Han, Y.; Breitler, S.;
Zheng, S.; Corey, E. Enantioselective Conversion of Achiral
Cyclohexadienones to Chiral Cyclohexenones by Desymmetrization.
Org. Lett. 2016, 18, 6172-6175. (e) Bokka, A.; Mao, J. X.; Hartung, J.;
Martinez, S. R.; Simanis, J. A.; Nam, K.; Jeon, J.; Shen, X. Org. Lett.
2018, 20, 5158-5162.
(4) (a) Ito, M.; Kobayashi, C.; Himizu, A.; Ikariya, T. Highly
Enantioselective Hydrogenative Desymmetrization of Bicyclic Imides
Leading to Multiply Functionalized Chiral Cyclic Compounds. J. Am.
Chem. Soc. 2010, 132, 11414-11415. (b) Takebayashi, S.; John, J. M.;
Bergens, S. H. Desymmetrization of meso-Cyclic Imides via
Enantioselective Monohydrogenation. J. Am. Chem. Soc. 2010, 132,
12832-12834. (c) Yoshimura, M.; Tsuda, K.; Nakatsuka, H.;
(8) (a) Monfette, S.; Turner, Z. R.; Semproni, S. P.; Chirik, P. J.
Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for
Asymmetric Alkene Hydrogenation. J. Am. Chem. Soc. 2012, 134,
4561-4564. (b) Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S.
W.; Tudge, M. T.; Chirik, P. J. Cobalt Precursors for High-Throughput
Discovery of Base Metal Asymmetric Alkene Hydrogenation Catalysts.
Science 2013, 342, 1076-1080. (c) Friedfeld, M. R.; Shevlin, M.;
Margulieux, G. W.; Campeau, L. C.; Chirik, P. J. Cobalt-Catalyzed
Enantioselective Hydrogenation of Minimally Functionalized Alkenes:
ACS Paragon Plus Environment