746
X.-D. Jiang, Y. Yamamoto / Journal of Organometallic Chemistry 695 (2010) 740–746
[2] R.R. Homes, Pentacoordinated Phosphorus-Structure and Spectroscopy ACS
Monograph 175 and 176, vol. I and II, American Chemical Society, Washington,
DC, 1980.
[3] D.E.C. Corbridge, Phosphorus: An Outline of its Chemistry, Biochemistry and
Technology, fourth ed., Elsevier, Amsterdam, 1990 (Chapter 14).
[4] R. Burgada, R. Setton, in: F.R. Hartley (Ed.), The Chemistry of
Organophosphorus Compounds, vol. 3, Wiley-Interscience, Chichester, 1994,
pp. 185–277.
[5] A.C. Hengge, Acc. Chem. Res. 35 (2002) 105–112.
[6] S.D. Lahiri, G. Zhang, D. Dunaway-Mariano, K.N. Allen, Science 299 (2003)
2067–2071.
[7] R.R. Holmes, Acc. Chem. Res. 37 (2004) 746–753.
[8] F.H. Westheimer, Acc. Chem. Res. 1 (1968) 70–78.
0.679 mmol) was added to a solution of 1 (88.5 mg, 0.109 mmol) in
Et2O (3 mL) at ꢁ78 °C. The mixture was then stirred for 1 h at room
temperature. I2 (110 mg, 0.433 mmol) was added to the mixture at
ꢁ78 °C and stirred for 1 h at 0 °C. The reaction was quenched with
aqueous Na2S2O3 (50 mL ꢂ 2). The mixture was extracted with
Et2O (60 mL ꢂ 2), and the organic layer was washed with brine
(50 mL ꢂ 2) and dried over anhydrous MgSO4. After removing the
solvents by evaporation, the resulting crude was separated by TLC
(n-hexane/CH2Cl2 = 4:1) to afford 6b (67.4 mg, 0.0667 mmol, 61%)
as a white solid. Colorless crystals of 6b suitable for X-ray analysis
were obtained by recrystallization from n-hexane/CH2Cl2. M.p.:
[9] G.R.J. Thatcher, R. Kluger, Adv. Phys. Org. Chem. 25 (1989) 99–265.
[10] R.S. Berry, J. Chem. Phys. 32 (1960) 933–938.
[11] K. Mislow, Acc. Chem. Res. 3 (1970) 321–331.
3
160.5–161.0 °C; 1H NMR (CDCl3) d 8.27 (d, 2H, JH–H = 8 Hz), 7.81
(br d, 2H, 3JH–H = 8 Hz), 7.74 (t, 2H, 3JH–H = 8 Hz), 7.64 (t, 2H, 3JH–H
=
[12] E.L. Muetterties, Acc. Chem. Res. 3 (1970) 266–273.
[13] J. Moc, K. Morokuma, J. Am. Chem. Soc. 117 (1995) 11790–11797.
[14] I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie, F. Ramirez, Acc. Chem. Res. 4
(1971) 288–296.
[15] P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E.A.
Tsolis, I. Ugi, Angew. Chem., Int. Ed. 10 (1971) 687–715.
[16] J.A. Altmann, K. Yates, I.G. Csizmadia, J. Am. Chem. Soc. 98 (1976) 1450–1454.
[17] A. Strich, A. Veillard, J. Am. Chem. Soc. 95 (1973) 5574–5581.
[18] S.-K. Shih, S.D. Peyerimhoff, J. Chem. Soc., Faraday Trans. II 75 (1979) 379–389.
[19] M. Nakamoto, S. Kojima, S. Matsukawa, Y. Yamamoto, K.-Y. Akiba, J.
Organomet. Chem. 643–644 (2002) 441–452.
3
8 Hz), 6.99 (s, 2H), 3.39 (sept, 2H, JH–H = 6.6 Hz), 2.83 (sept, 1H,
3
3
3JH–H = 6.6 H z), 1.34 (d, 6H, JH–H = 6.6 Hz), 1.21 (d, 6H, JH–H
=
6.6 Hz), 0.66 (d, 6H, JH–H = 6.6 Hz); 19F NMR (CDCl3) d ꢁ78.3 (s,
3
6F), ꢁ78.5 (dd, 6F, 3JF–F = 18.5 Hz, 5JF–F = 4.9 Hz), ꢁ114.1 (d, 2F, 2JF–F
=
2
3
286 Hz), ꢁ116.0 (dq, 2F, JF–F = 286 Hz, JF–F = 18.5 Hz), ꢁ117.9 (d,
2
2
5
2F, JF–F = 286 Hz), ꢁ119.3 (dq, 2F, JF–F = 286 Hz, JF–F = 4.9 Hz).
Anal. Calc. for C37H31F20O2Sb: C, 44.03; H, 3.10. Found: C, 44.02; H,
2.83%.
[20] S. Matsukawa, K. Kajiyama, S. Kojima, S.-Y. Furuta, Y. Yamamoto, K.-Y. Akiba,
Angew. Chem., Int. Ed. 41 (2002) 4718–4722.
4.8. Single crystal X-ray analysis of 2a, 4, 6a, and 6b
[21] S. Trippett, Phosphorus Sulfur 1 (1976) 89–98.
[22] S. Trippett, Pure Appl. Chem. 40 (1974) 595–604.
[23] G. Buono, J.R. Llinas, J. Am. Chem. Soc. 103 (1981) 4532–4540.
[24] M. Eisenhut, H.L. Mitchell, D.D. Traficante, R.J. Kaufman, J.M. Deutsch, G.M.
Whitesides, J. Am. Chem. Soc. 96 (1974) 5385–5397.
[25] L.V. Griend, R.G. Cavell, Inorg. Chem. 22 (1983) 1817–1820.
[26] S. Kumaraswamy, C. Muthiah, K.C. Kumara Swamy, J. Am. Chem. Soc. 122
(2000) 964–965.
[27] P. Kommana, S. Kumaraswamy, J.J. Vittal, K.C. Kumara Swamy, Inorg. Chem. 41
(2002) 2356–2363.
[28] P. Kommana, N.S. Kumar, J.J. Vittal, E.G. Jayasree, E.D. Jemmis, K.C. Kumara
Swamy, Org. Lett. 6 (2004) 145–148.
[29] R. Hoffmann, J.M. Howell, E.L. Muetterties, J. Am. Chem. Soc. 94 (1972) 3047–
3058.
[30] R.S. McDowell, A. Streitwieser Jr., J. Am. Chem. Soc. 107 (1985) 5849–5855.
[31] J.A. Deiters, R.R. Holmes, J.M. Holmes, J. Am. Chem. Soc. 110 (1988) 7672–7681.
[32] P. Wang, Y. Zhang, R. Glaser, A.E. Reed, P.V.R. Schleyer, A. Streitwieser Jr., J. Am.
Chem. Soc. 113 (1991) 55–64.
[33] H. Wasada, K. Hirao, J. Am. Chem. Soc. 114 (1992) 16–27.
[34] G.R.J. Thatcher, A.S. Campbell, J. Org. Chem. 58 (1993) 2272–2281.
[35] P. Wang, Y. Zhang, R. Glaser, A. Streitwieser, P.V.R. Schleyer, J. Comput. Chem.
14 (1993) 522–529.
[36] B.D. Wladkowski, M. Krauss, W.J. Stevens, J. Phys. Chem. 99 (1995) 4490–4500.
[37] J.C. Martin, Science 221 (1983) 509–514.
Crystals suitable for the X-ray structural determination were
mounted on a Mac Science DIP2030 imaging plate diffractometer
and irradiated with graphite monochromated Mo K
a radiation
(k = 0.71073 Å) for the data collection. The unit cell parameters
were determined by separately autoindexing several images in
each data set using the DENZO program (MAC Science) [47]. For each
data set, the rotation images were collected in 3° increments with a
total rotation of 180° about the u axis. The data were processed
using SCALEPACK. The structure was solved by a direct method with
the SHELX-97 program [48]. Refinement on F2 was carried out using
the full-matrix leat-squares by the SHELX-97 program [48]. All non-
hydrogen atoms were refined using the anisotropic thermal
parameters. The hydrogen atoms were included in the refinement
along with the isotropic thermal parameters. The crystallographic
data are summarized in Table 3.
Supplementary material
[38] X.-D. Jiang, K.-I. Kakuda, S. Matsukawa, H. Yamamichi, S. Kojima, Y. Yamamoto,
Chem. Asian J. 2 (2007) 314–323.
[39] S. Kojima, K. Kajiyama, M. Nakamoto, K.-Y. Akiba, J. Am. Chem. Soc. 118 (1996)
12866–12867.
[40] K. Kajiyama, M. Yoshimune, M. Nakamoto, S. Matsukawa, S. Kojima, K.-Y.
Akiba, Org. Lett. 3 (2001) 1873–1875.
[41] X.-D. Jiang, S. Matsukawa, H. Yamamichi, Y. Yamamoto, Heterocycles 73
(2007) 805–824.
CCDC 752614, 752615, 752616, and 752617 contain the supple-
mentary crystallographic data for 2a, 4, 6a, and 6b. These data can
be obtained free of charge from The Cambridge Crystallographic
[42] X.-D. Jiang, S. Matsukawa, Y. Yamamoto, Dalton Trans. 28 (2008) 3678–3687.
[43] X.-D. Jiang, S. Matsukawa, H. Yamamichi, Y. Yamamoto, Inorg. Chem. 46 (2007)
5480–5482.
Acknowledgements
[44] V.G.S. Box, J. Mol. Struct. 569 (2001) 167–178.
[45] X.-D. Jiang, S. Matsukawa, H. Yamamichi, K.-I. Kakuda, S. Kojima, Y. Yamamoto,
Eur. J. Org. Chem. (2008) 1392–1405.
[46] When TTP (2,4,6-tri-tert-butylphenyl) was employed, the anti-apicophilic
stiborane and its corresponding apicophilic stiborane were not obtained. It
was due to steric hindrance of the bulky monodentate ligand of TTP.
[47] Z. Otwinowski, W. Minor, Methods in enzymology, in: C.W. Carter Jr., R.M.
Sweet (Eds.), Macromolecular Crystallography, Part A, vol. 276, Academic
Press, 1997, pp. 307–326.
This study was supported by two Grants-in-Aid for Scientific
Research on Priority Areas (Nos. 14340199, 17350021) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan.
References
[48] G.M. Sheldrick, SHELX-97, University of Göttingen, Göttingen, Germany, 1997.
[1] K.-Y. Akiba, Chemistry of Hypervalent Compounds, Wiley-VCH, New York,
1999.