Annulation of 2-Alkynylanilines with Activated Ketones
Prakash, Eur. J. Med. Chem. 2003, 38, 533; d) R. N. Kumar, T.
Suresh, P. S. Mohan, Indian J. Chem. B 2003, 42, 688.
as catalyst, however, competitive formation of enamine in-
termediate A is preferred to some extent (path b1). The re-
duced electron density on nitrogen of intermediate A makes
its further hydration less effective and less regioselective
(path b2), which accounts for a much lower overall yield.
[3]
a) P. R. Kym, M. E. Kort, M. J. Coghlan, J. L. Moore, R. Tang,
J. D. Ratajczyk, D. P. Larson, S. W. Elmore, J. K. Pratt, M. A.
Stashko, H. D. Falls, C. W. Lin, M. Nakane, L. Miller, C. M.
Tyree, J. N. Miner, P. B. Jacobson, D. M. Wilcox, P. Nguyen,
B. C. Lane, J. Med. Chem. 2003, 46, 1016; b) S. W. Elmore,
M. J. Coghlan, D. D. Anderson, J. K. Pratt, B. E. Green, A. X.
Wang, M. A. Stashko, C. W. Lin, C. M. Tyree, J. N. Miner, P. B.
Jacobson, D. M. Wilcox, B. C. Lane, J. Med. Chem. 2001, 44,
4481.
[4]
[5]
a) A. Nayyar, A. Malde, R. Jain, E. Coutinho, Bioorg. Med.
Chem. 2006, 14, 847; b) A. Nayyar, R. Jain, Curr. Med. Chem.
2005, 12, 1873; c) V. Monga, A. Nayyar, B. Vaitilingam, P. B.
Palde, P. B. Jhamb, S. S. Kaur, P. P. Singh, R. Jain, Bioorg.
Med. Chem. 2004, 12, 6465; d) S. Vangapamdu, M. Jain, R.
Jain, S. Kaur, P. P. Singh, Bioorg. Med. Chem. 2004, 12, 2501.
a) X. Franck, A. Fournet, E. Prina, R. Mahieux, R. Hocquem-
iller, B. Figadere, Bioorg. Med. Chem. Lett. 2004, 14, 3635; b)
C. Bénard, F. Zouhiri, M. Normand-Bayle, M. Danet, D. De-
smaële, H. Leh, J. F. Mouscadet, G. Mbemba, C. M. Thomas,
S. Bonnenfant, M. Le Bret, J. d’Angelo, Bioorg. Med. Chem.
Lett. 2004, 14, 2473; c) M. A. Fakhfakh, A. Fournet, E. Prina,
J. F. Mouscadet, X. Franck, R. Hocquemiller, B. Figadere, Bi-
oorg. Med. Chem. 2003, 11, 5013.
Scheme 4. Competitive pathways of the one-pot, indirect Fried-
länder quinoline synthesis.
[6]
a) A. Tsotinis, M. Vlachou, S. Zouroudis, A. Jeney, F. Timar,
D. E. Thurston, C. Roussakis, Lett. Drug Des. Discov. 2005, 2,
189; b) A. R. Martirosyan, R. Rahim-Bata, A. B. Freeman,
C. D. Clarke, R. L. Howard, J. S. Strobl, Biochem. Pharmacol.
2004, 68, 1729; c) A. Perzyna, F. Klupsch, R. Houssin, N.
Pommery, A. Lemoine, J. P. Hénichart, Bioorg. Med. Chem.
Lett. 2004, 14, 2363.
Conclusions
In summary, we have demonstrated a convenient and sin-
gle-step procedure for the conversion of readily available 2-
alkynylanilines and activated ketones into the correspond-
ing 4-alkylquinolines. The tolerance of a wide range of
functionalities on both substrates gives complementary ac-
cess to the Friedländer reaction, resulting in the formation
of a variety of 4-alkylquinolines. Dimeric quinolines with
potential biological interest can also be synthesized ef-
ficiently from symmetric 2-alkynylanilines.
[7]
[8]
[9]
For representative reviews, see: a) J. P. Michael, Nat. Prod. Rep.
2007, 24, 223; b) J. P. Michael, Nat. Prod. Rep. 2005, 22, 627;
c) J. P. Michael, Nat. Prod. Rep. 2004, 21, 650.
a) V. V. Kouznetsov, L. Y. Vargas Mendez, C. M. Melen-
dez Gomez, Curr. Org. Chem. 2005, 9, 141; b) S. Madapa, Z.
Tusi, S. Batra, Curr. Org. Chem. 2008, 12, 1116.
a) C. S. Cho, B. T. Kim, T.-J. Kim, S. C. Shim, Chem. Commun.
2001, 2576; b) C. S. Cho, B. T. Kim, H.-J. Choi, T.-J. Kim, S. C.
Shim, Tetrahedron 2003, 59, 997; c) R. Martinez, D. J. Ramon,
M. Yus, Tetrahedron 2006, 62, 8988; d) H. M. Vander, N. Le-
doux, B. Allaert, P. V. D. Voort, R. Drozdzak, D. D. Vos, F.
Verpoort, New J. Chem. 2007, 31, 1572; e) R. Martinez, D. J.
Ramon, M. Yus, Eur. J. Org. Chem. 2007, 1599; f) R. Martinez,
D. J. Ramon, M. Yus, J. Org. Chem. 2008, 73, 9778; g) J.
Marco-Contelles, E. Perez-Mayoral, A. Samadi, M.
do Carmo Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652;
h) L. Zhang, J. Wu, Adv. Synth. Catal. 2007, 349, 1047; i) G.-
W. Wang, C.-S. Jia, Y.-W. Dong, Tetrahedron Lett. 2006, 47,
1059; j) C.-S. Jia, Z. Zhang, S.-J. Tu, G.-W. Wang, Org. Biomol.
Chem. 2006, 4, 104.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details and copies of the 1H and 13C NMR spec-
tra of all new compounds.
Acknowledgments
[10]
[11]
a) N. Shindoh, H. Tokuyama, Y. Takemoto, K. Takasu, J. Org.
Chem. 2008, 73, 7451; b) A. R. Katritzky, S. Rachwal, B. Rach-
wal, Tetrahedron 1996, 52, 15031; c) J. S. Yadav, B. V. S. Reddy,
R. S. Rao, V. Naveenkumar, K. Nagaiah, Synthesis 2003, 1610;
d) Y.-L. Zhao, W. Zhang, S. Wang, Q. Liu, J. Org. Chem. 2007,
72, 4985.
a) X. Zhang, M. A. Campo, R. C. Larock, Org. Lett. 2005, 7,
763; b) Y. Luo, Z. Li, C.-J. Li, Org. Lett. 2005, 7, 2675; c) B.
Gabriele, R. Mancuso, G. Salerno, G. Ruffolo, P. Plastina, J.
Org. Chem. 2007, 72, 6873; d) H. Amii, Y. Kishikawa, K. Uney-
ama, Org. Lett. 2001, 3, 1109; e) L. Li, W. D. Jones, J. Am.
Chem. Soc. 2007, 129, 10707; f) C. S. Cho, J. U. Kim, Tetrahe-
dron Lett. 2007, 48, 3775; g) Z. Zhang, J. Tan, Z. Wang, Org.
Lett. 2008, 10, 173, and references cited therein.
This work was financially supported by the National Science Foun-
dation of China (20942001) and the Start-up Foundation for New
Investigators from Guangzhou Institute of Biomedicine and Health
(GIBH).
[1] a) A. A. Joshi, C. L. Viswanathan, Bioorg. Med. Chem. Lett.
2006, 16, 2613; b) A. A. Joshi, S. S. Narkhede, C. L. Viswana-
than, Bioorg. Med. Chem. Lett. 2005, 15, 73; c) C. Portela,
C. M. M. Afonso, M. M. M. Pinta, M. J. Ramos, Bioorg. Med.
Chem. 2004, 12, 3313.
[2] a) P. Narender, U. Srinivas, M. Ravinder, B. A. Rao, C. Ra-
mesh, K. Harakishore, B. Gangadasu, U. S. N. Murthy, V. J.
Rao, Bioorg. Med. Chem. 2006, 14, 4600; b) B. S. Holla, K. N.
Poojary, B. Poojary, K. S. Bhat, N. S. Kumari, Indian J. Chem.
B 2005, 44, 2114; c) A. K. Sadana, Y. Mirza, K. R. Aneja, O.
[12]
a) L. Hintermann, A. Labonne, Synthesis 2007, 8, 1121; b) E.
Bosch, L. Jeffries, Tetrahedron Lett. 2001, 42, 8141; c) M. J.
Chapdelaine, P. J. Warwick, A. Shaw, J. Org. Chem. 1989, 54,
Eur. J. Org. Chem. 2010, 818–822
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
821