1506
S. Rudys et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1504–1506
M.; Moreau, E.; Masurier, N.; Lacroix, J.; Gaudreault, R. C.; Chezal, J. M.; El
Table 2
In vitro antimicrobial activity of compounds 4a–ba
Laghdach, A.; Canitrot, D.; Debiton, E.; Teulade, J. C.; Chavignon, O. Eur. J. Med.
Chem. 2008, 43, 2505; (c) Ruchelman, A. L.; Singh, S. K.; Ray, A.; Wu, X. H.; Yang,
J. M.; Li, T. K.; Liu, A.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 2061;
(d) Li, T. K.; Houghton, P. J.; Desai, S. D.; Daroui, P.; Liu, A. A.; Hars, E. S.;
Ruchelman, A. L.; LaVoie, E. J.; Liu, L. F. Cancer Res. 2003, 63, 8400.
Microbial strain
Compound
4a
4b
4. (a) León, L. G.; Carballo, R. M.; Vega-Hernández, M. C.; Martín, V. S.; Padrón, J. I.;
Padrón, J. M. Bioorg. Med. Chem. Lett. 2007, 17, 2681; (b) Padrón, J. M.; Tejedor,
D.; Santos-Expósito, A.; García-Tellado, F.; Martín, V. S.; Villar, J. Lett. Drug Des.
Discov. 2005, 2, 529; (c) Padrón, J. M.; Tejedor, D.; Santos-Expósito, A.; García-
Tellado, F.; Martín, V. S.; Villar, J. Bioorg. Med. Chem. Lett. 2005, 15, 2487.
5. (a) Asao, N.; Iso, K.; Yudha, S. S. Org. Lett. 2006, 8, 4149; (b) Ding, Q.; Wang, B.;
Wu, J. Tetrahedron 2007, 63, 12166; (c) Sun, W.; Ding, Q.; Sun, X.; Fan, R.; Wu, J.
J. Comb. Chem. 2007, 9, 690; (d) Iso, K.; Yudha, S. S.; Menggenbateer; Asao, N.
Heterocycles 2007, 74, 649.
6. (a) Cikotiene, I.; Kairys, V.; Buksnaitiene, R.; Morkunas, M.; Motiejaitis, D.;
Rudys, S.; Brukstus, A.; Fernandes, M. X. Tetrahedron 2009, 65, 5760; (b)
Cikotiene, I.; Morkunas, M.; Motiejaitis, D.; Rudys, S.; Brukstus, A. Synlett 2008,
1693; (c) Cikotiene, I.; Morkunas, M. Synlett 2009, 284; (d) Cikotiene, I.
Tetrahedron Lett. 2009, 50, 2570.
Escherichia coli
ATCC 25922
ATCC 35218
>100
>100
20 ( 0.4)
27 ( 2.5)
Enterococcus faecalis
ATCC 29212
>100
>100
>100
>100
25 ( 3.1)
63 ( 2.1)
56 ( 1.7)
22 ( 1.7)
Klebsiella oxytoca
ATCC 700324
Klebsiella pneumoniae
ATCC 700603
Pseudomonas aeruginosa
ATCC 27853
7. General procedure for the synthesis of 2-substituted 1,2-dihydro-3-phenyl-1-
(trichloromethyl)benzo[b]-[1,6]naphthyridines (2) and N-[(1E)-[2-(phenyleth-
Staphylococcus aureus
ATCC 25923
ATCC 29213
EMRSA-16
>100
29 ( 6.2)
>100
20 ( 0.6)
23 ( 0.7)
17 ( 2.6)
24 ( 1.5)
ynyl)-3-quinolinyl]methylene]benzen-amine (3): To
a mixture of 1 (0.1 g,
0.39 mmol) and 3 Å MS (0.3 g) in chloroform (3 mL) the corresponding amine
(0.39 mmol) was added. The reaction mixture was refluxed for 24–48 h. After
reaction completion as observed by TLC, the solvent was evaporated to leave
the crude product, which was purified by basic silica gel column
chromatography using a mixture of toluene and ethyl acetate as an eluent to
give 2a–f and 3.
NRS 107
>100
Candida albicans
ATCC 90028
>100
>100
>100
>100
>100
20 ( 1.0)
18 ( 1.3)
4.5 ( 1.6)
16 ( 1.1)
20 ( 0.6)
Candida glabrata
ATCC 90030
8. 1,2-Dihydro-3-phenyl-2-(phenylmethyl)-1-
(trichloromethyl)benzo[b][1,6]naphthyridine (2a): Yield 48%, yellow solid, mp
146–148 °C. 1H NMR (300 MHz, CDCl3) d: 4.54 (1H, d, J2 = 15.9 Hz, PhCH), 4.86
(1H, d, J2 = 15.9 Hz, PhCH), 5.27 (1H, s, CH), 6.49 (1H, s, CH), 6.98–6.99 (2H, m,
ArH), 7.08–7.10 (3H, m, ArH), 7.41–7.51 (4H, m, ArH), 7.69–7.81 (4H, m, ArH),
7.97 (1H, s, CH), 8.04 (1H, d, J = 8.4 Hz, ArH) ppm. 13C NMR (75 MHz, CDCl3) d:
59.2, 74.9, 104.9, 109.2, 119.0, 124.9, 126.6, 127.3, 127.6, 128.0, 128.4, 128.6,
128.8, 129.5, 130.3, 136.9, 137.5, 137.9, 148.7, 152.8 ppm. Anal. Calcd for
C26H19Cl3N2: C, 67.04; H, 4.11; N, 6.01. Found: C, 67.01; H, 4.25; N, 5.97.
N-[(1E)-[2-(Phenylethynyl)-3-quinolinyl]methylene]benzenamine (3): Yield 98%,
Candida krusei
ATCC 6258
Candida nivariensis
5937-63
Candida parapsilosis
ATCC 22019
yellowish solid, mp 118–120 °C (octane). IR (KBr)
m .
2118 (C„C) cmÀ1 1H NMR
a
Values expressed as IC50 are given in
ments, standard deviation is given in parentheses.
lM and are means of three to six experi-
(300 MHz, CDCl3) d: 7.34–7.39 (3H, m, ArH), 7.45–7.53 (5H, m, ArH), 7.61–7.66
(1H, m, ArH), 7.69–7.72 (2H, m, ArH), 7.80–7.86 (1H, m, ArH), 7.99 (1H, d, J =
8.7 Hz, ArH), 8.19 (1H, d, J = 8.7 Hz, ArH), 9.10 (1H, s, C(4)–H), 9.29 (1H, s,
CH@N) ppm. 13C NMR (75 MHz, CDCl3) d: 86.5, 94.6, 121.1, 126.7, 127.1, 127.8,
128.2, 128.5, 128.9, 129.2, 129.4, 129.5, 129.9, 131.5, 132.2, 134.7, 137.1, 143.7,
149.2, 151.7, 157.1 ppm. Anal. Calcd for C24H16N2: C, 86.72; H, 4.85; N, 8.43.
Found: C, 86.91; H, 4.77; N, 8.49.
benzo[b][1,6]naphthyridines showed relevant selectivity for fur-
ther development as candidates for cancer therapy. We also found
that 1-alkoxy-1H-pyrano[4,3-b]quinolines show as promising scaf-
folds for the development of antimicrobial agents, able to inhibit
the growth of clinically relevant microbial strains. Extension of
these investigations is currently underway and the results together
with the biological evaluation will be fully reported in due course.
9. Godet, T.;Vaxelaire, C.;Michel, C.;Millet, A.; Belmont, P. Chem. Eur. J. 2007, 13, 5632.
10. 1-Methoxy-3-phenyl-1H-pyrano[4,3-b]quinoline (4a): Yield 88%, yellow solid,
mp 122–123 °C. 1H NMR (300 MHz, CDCl3) d 3.69 (3H, s, OCH3), 6.35 (1H, s,
CH), 7.00 (1H, s, CH), 7.44–7.49 (4H, m, ArH), 7.69 (1H, t, J = 7.2 Hz, ArH), 7.79
(1H, d, J = 7.8 Hz, ArH), 7.89–7.92 (2H, m, ArH), 8.03–8.07 (2H, m, ArH); 13C
NMR (75 MHz, CDCl3) d 55.9, 100.1, 102.7, 125.4, 125.6, 127.9, 128.4, 128.5,
128.6, 129.2, 129.9, 130.3, 133.2, 133.7, 148.8, 149.7, 155.8 ppm. Anal. Calcd for
C19H15NO2: C, 78.87; H, 5.23; N, 4.84. Found: C, 79.00; H, 5.25; N, 4.92.
11. Formation of 5-endo-dig cyclization product requires the presence of a base.
See: (a) Kanazawa, C.; Ito, A.; Terada, M. Synlett 2009, 638; (b) Wei, L. L.; Wei, L.
M.; Pan, W. B.; Wu, M. J. Synlett 2004, 1497. and Refs. 6b and 12.
12. (a) Cikotiene, I.; Buksnaitiene, R.; Rudys, S.; Morkunas, M.; Motiejaitis, D.
Tetrahedron 2010, 66, 251; b The more detailed investigation of regioselectivity
of acetalisation-cyclization reactions of 2-alkynylquinoline-3-carbaldehydes
together with data of NMR and molecular modeling will be published in due
course.
13. Miranda, P. O.; Padrón, J. M.; Padrón, J. I.; Villar, J.; Martín, V. S. ChemMedChem
2006, 1, 323.
14. Monks, A.; Scudiero, D. A.; Skehan, P.; Shoemaker, R. H.; Paull, K. D.; Vistica, D.
T.; Hose, C.; Langley, J.; Cronice, P.; Vaigro-Wolf, M.; Gray-Goodrich, M.;
Campbell, H.; Mayo, M. R. J. Natl. Cancer Inst. 1991, 83, 757.
15. The bacterial and fungal strains were grown on nutrient agar plates at 35–
37 °C. After 24 h of incubation, cells were suspended in normal saline at a
concentration of approximately 5.0 Â 105 cfu mLÀ1 for bacterial strains and
1.0–5.0 Â 103 cfu mLÀ1 for Candida spp. by matching with 0.5 McFarlands
standards. Whole cell antimicrobial activity of compounds was determined in
96-well microtiter plates by a broth microdilution procedure using Mueller
Hinton broth (Becton Dickinson, USA) for bacteria and RPMI 1640 (Sigma)
buffered with MOPS (Sigma) for fungi. Proper growth and sterile screening
controls were included. Pure compounds were initially dissolved in DMSO at
Acknowledgments
This research was supported by the Lithuanian State Science
and Studies Foundation (Reg. No. T-09027, Grant No. T-67/09).
Financial support co-financed by the EU FEDER: the Spanish MICIIN
(CTQ2008-06806-C02-01/BQU) and MSC (RTICC RD06/0020/1046);
the Canary Islands ACIISI (PI 2007/021) and FUNCIS (PI 01/06 and
35/06). E.P.R. thanks the Spanish MSC-FIS for a postdoctoral con-
tract. J.M.P. thanks the Spanish MEC-FSE for a Ramón y Cajal
contract.
References and notes
1. (a) Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J. A.; Anderson, M.
B.; Mather, G.; Pleiman, C. M.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S. X. J.
Med. Chem. 2009, 52, 2341; (b) Krug, M.; Hilgeroth, A. Mini-Rev. Med. Chem.
2008, 8, 1312; (c) Pédeboscq, S.; L’Azou, B.; Passagne, I.; De Giorgi, F.; Ichas, F.;
Pometan, J. P.; Cambar, J. J. Exp. Ther. Oncol. 2008, 7, 99; (d) Zhang, Y.; Xu, W.
Anticancer Agents Med. Chem. 2008, 8, 698; (e) Jantova, S.; Repicky, A.;
Paulovicova, E.; Letasiova, S.; Cipak, L. Exp. Oncol. 2008, 30, 139; (f) Welch, S.
A.; Moore, M. J. Future Oncol. 2007, 3, 247; (g) Herbst, R. S.; Kies, M. S. Clin. Adv.
Hematol. Oncol. 2003, 1, 466; (h) Denny, W. A. Farmaco 2001, 56, 51.
2. (a) Srivastava, S. K.; Jha, A.; Agarwal, S. K.; Mukherjee, R.; Burman, A. C.
Anticancer Agents Med. Chem. 2007, 7, 685; (b) Sissi, C.; Palumbo, M. Curr. Med.
Chem. Anticancer Agents 2003, 3, 439; (c) Hradil, P.; Hlavác, J.; Soural, M.;
Hajdúch, M.; Kolár, M.; Vecerová, R. Mini-Rev. Med. Chem. 2009, 9, 696; (d) Xia,
Y.; Yang, Z. Y.; Morris-Natschke, S. L.; Lee, K. H. Curr. Med. Chem. 1999, 6, 179.
3. (a) Kumar, V.; Jaggi, M.; Singh, A. T.; Madaan, A.; Sanna, V.; Singh, P.; Sharma, P.
K.; Irchhaiya, R.; Burman, A. C. Eur. J. Med. Chem. 2009, 44, 3356; (b) Andaloussi,
400 times the desired final maximum test concentration, that is, 100
compound was tested in duplicates at eight different 10-fold serial dilutions
ranging from 100 to 0.05 M. The microtiter plates were incubated at 35-37 °C
lM. Each
l
in a moist dark chamber. After incubation, plates were shaken and the optical
density values were recorded spectrophotometrically. Bacterial plates were
read at 630 nm after 24 h of incubation. Fungal plates were read at 490 nm
after 48 h of incubation. The IC50 was established as the concentration of
compound that inhibited 50% growth when compared to untreated cells.
16. DeLeo, F. R.; Chambers, H. F. J. Clin. Invest. 2009, 119, 2464.