B.-Q. Hu, L.-X. Wang, L. Yang, J.-F. Xiang, Y.-L. Tang
FULL PAPER
2l:[14] Light yellow solid (8 mg, 18%); m.p. 269–270 °C. IR (KBr):
ani, Chem. Soc. Rev. 2008, 37, 300; h) A. Masarwa, I. Marek,
Chem. Eur. J. 2010, 16, 9712; i) M. Murakami, T. Matsuda,
Chem. Commun. 2011, 47, 1100; j) C. Nájera, J. W. Sansano,
Angew. Chem. Int. Ed. 2009, 48, 2452; Angew. Chem. 2009, 121,
2488; k) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613;
l) G. B. Dong (Ed.), Topics in Current Chemistry, vol. 346: C–C
Bond Activation, Springer-Verlag, Berlin/Heidelberg, Germany,
2014.
ν = 3081, 1672, 1611, 1012 cm–1. 1H NMR (300 MHz, [D ]DMSO):
˜
6
δ = 10.97 (br. s, 1 H), 8.68 (d, J = 4.2 Hz, 1 H), 8.61 (d, J = 8.1 Hz,
1 H), 8.36 (dd, J = 8.1, 0.9 Hz, 1 H), 7.93 (ddd, J = 7.8, 1.8 Hz, 1
H), 7.86–7.77 (m, 2 H), 7.56–7.47 (m, 2 H) ppm. 13C NMR
(75 MHz, [D6]DMSO): δ = 161.4, 149.2, 148.9, 148.7, 148.5, 137.5,
134.6, 128.0, 127.3, 126.8, 126.2, 122.5, 122.0 ppm.
[2]
For reviews on C–H bond cleavage, see: a) C.-L. Sun, B.-J. Li,
Z.-J. Shi, Chem. Commun. 2010, 46, 677; b) G. E. Dobereiner,
R. H. Crabtree, Chem. Rev. 2010, 110, 681; c) R. Jazzar, J.
Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, Chem.
Eur. J. 2010, 16, 2654; d) D. A. Colby, R. G. Bergman, J. A.
Ellman, Chem. Rev. 2010, 110, 624; e) C. Copéret, Chem. Rev.
2010, 110, 656; f) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010,
110, 1147; g) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder,
J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890; h)
M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010,
110, 704; i) A. Gunay, K. H. Theopold, Chem. Rev. 2010, 110,
1060; j) D. Balcells, E. Colt, O. Eisenstein, Chem. Rev. 2010,
110, 749; k) F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082;
l) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293; m)
C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; n) J.
Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170; o) L. Acker-
mann, Chem. Rev. 2011, 111, 1315.
2m: White solid (39 mg, 67%); m.p. Ͼ300 °C. IR (KBr): ν = 3429,
˜
1
1681, 1605, 1311, 772 cm–1. H NMR (300 MHz, [D6]DMSO): δ =
12.74 (br. s, 1 H), 8.33 (d, J = 8.4 Hz, 2 H), 8.17 (d, J = 7.8 Hz, 1
H), 8.02 (d, J = 8.1 Hz, 2 H), 7.86 (t, J = 7.7 Hz, 1 H), 7.77 (d, J
= 8.1 Hz, 1 H), 7.56 (t, J = 7.4 Hz, 1 H) ppm. 13C NMR (75 MHz,
[D6]DMSO): δ = 162.6, 151.4, 148.8, 137.3, 135.2, 132.9, 129.1,
128.2, 127.7, 126.4, 121.7, 118.8, 114.1 ppm. HRMS: calcd. for
C15H8N3O [M + H]+ 246.06729; found 246.06720.
2o: White solid (35 mg, 68%); m.p. 295–296 °C. IR (KBr): ν =
˜
3428, 1678, 1605, 1094, 766 cm–1. 1H NMR (400 MHz, [D6]-
DMSO): δ = 12.73 (br. s, 1 H), 9.30 (s, 1 H), 8.76 (d, J = 3.2 Hz,
1 H), 8.50 (d, J = 7.6 Hz, 1 H), 8.18 (d, J = 7.6 Hz, 1 H), 7.87 (t,
J = 7.6 Hz, 1 H), 7.78 (d, J = 8.0 Hz, 1 H), 7.61–7.54 (m, 2 H) ppm.
13C NMR (75 MHz, [D6]DMSO): δ = 162.6, 151.8, 149.1, 136.8,
135.2, 132.0, 130.1, 129.2, 128.0, 127.3, 126.3, 121.5 ppm.
[3]
[4]
a) T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem.
Int. Ed. 2011, 50, 7740; Angew. Chem. 2011, 123, 7884; b) T.
Seiser, N. Cramer, J. Am. Chem. Soc. 2010, 132, 5340; c) S. C.
Bart, P. J. Chirik, J. Am. Chem. Soc. 2003, 125, 886; d) P. A.
Wender, A. G. Correa, Y. Sato, R. Sun, J. Am. Chem. Soc.
2000, 122, 7815; e) M. Murakami, H. Amii, K. Shigeto, Y. Ito,
J. Am. Chem. Soc. 1996, 118, 8285.
a) J. W. Suggs, C.-H. Jun, J. Am. Chem. Soc. 1984, 106, 3054;
b) C.-H. Jun, H. Lee, J. Am. Chem. Soc. 1999, 121, 880; c) M.
Gandelman, D. Milstein, Chem. Commun. 2000, 1603; d) C.-
H. Jun, D.-Y. Lee, H. Lee, J.-B. Hong, Angew. Chem. Int. Ed.
2000, 39, 3070; Angew. Chem. 2000, 112, 3214; e) A. M. Dreis,
C. J. Douglas, J. Am. Chem. Soc. 2009, 131, 412; f) N. Chatani,
Y. Ie, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. 1999, 121,
8645; g) J. Wang, W. Chen, S. Zuo, L. Liu, X. Zhang, J. Wang,
Angew. Chem. Int. Ed. 2012, 51, 12334; Angew. Chem. 2012,
124, 12500; h) F. D. Lewis, J. G. Magyar, J. Org. Chem. 1972,
37, 2102; i) N. Zhang, J. Vozzolo, J. Org. Chem. 2002, 67, 1703;
j) Z.-Q. Lei, H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, J.
Sun, Z.-J. Shi, Angew. Chem. Int. Ed. 2012, 51, 2690; Angew.
Chem. 2012, 124, 2744.
2p:[9] White solid (42.6 mg, 85%); m.p. 247–248 °C. IR (KBr): ν =
˜
3428, 1675, 1493, 1262, 1036 cm–1. 1H NMR (300 MHz, [D6]-
DMSO): δ = 12.51 (br. s, 1 H), 8.16 (d, J = 8.1 Hz, 2 H), 7.71 (d,
J = 8.7 Hz, 1 H), 7.56–7.53 (m, 4 H), 7.45 (dd, J = 8.7, 3.0 Hz, 1
H), 3.90 (s, 3 H) ppm. 13C NMR (75 MHz, [D6]DMSO): δ = 162.5,
158.2, 150.6, 143.7, 133.3, 131.5, 129.7, 129.1, 128.0, 124.6, 122.3,
106.3, 56.1 ppm.
2q:[9] Yellow solid (38 mg, 75%); m.p. Ͼ300 °C. IR (KBr): ν = 3080,
˜
1672, 1606, 1451, 1351, 943 cm–1. 1H NMR (300 MHz, [D6]-
DMSO): δ = 12.93 (br. s, 1 H), 8.44 (d, J = 1.8 Hz, 1 H), 8.37 (d,
J = 8.7 Hz, 1 H), 8.22 (d, J = 6.6 Hz, 3 H), 7.67–7.56 (m, 3 H) ppm.
13C NMR (75 MHz, [D6]DMSO): δ = 161.8, 155.0, 151.8, 132.6,
132.5, 130.1, 129.2, 128.7, 128.5, 125.8, 122.9, 120.5 ppm.
2s:[15] White solid (22 mg, 44%); m.p. 208–209 °C. IR (KBr): ν =
˜
3438, 1682, 1618, 1462, 901 cm–1. 1H NMR (300 MHz, [D6]-
DMSO): δ = 12.26 (br. s, 1 H), 8.08 (d, J = 7.8 Hz, 2 H), 7.79 (d,
J = 7.8 Hz, 1 H), 7.81 (d, J = 7.5 Hz, 1 H), 7.69 (d, J = 7.8 Hz, 1
H), 7.48 (t, J = 7.4 Hz, 1 H), 7.08 (d, J = 9.0 Hz, 2 H), 3.84 (s, 3
H) ppm. 13C NMR (75 MHz, [D6]DMSO): δ = 162.2, 157.1, 149.3,
141.2, 134.8, 128.83, 128.81, 127.3, 126.6, 126.5, 126.2, 121.3, 36.8,
32.9 ppm.
[5]
For a copper-catalyzed cleavage of C–C bonds, see: a) T. Sugii-
shi, A. Kimura, H. Nakamura, J. Am. Chem. Soc. 2010, 132,
5332; b) C. He, S. Guo, L. Huang, A. Lei, J. Am. Chem. Soc.
2010, 132, 8273; c) M. Sai, H. Yorimitsu, K. Oshima, Angew.
Chem. Int. Ed. 2011, 50, 3294; Angew. Chem. 2011, 123, 3352;
d) F. Chen, C. Qin, Y. Cui, N. Jiao, Angew. Chem. Int. Ed.
2011, 50, 11487; Angew. Chem. 2011, 123, 11689; e) C. H. Tang,
N. Jiao, Angew. Chem. Int. Ed. 2014, 53, 6528.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed description of the experimental procedures and ana-
lytical data for all compounds.
[6]
[7]
For an iron-catalyzed cleavage of C–C bonds, see: a) H. Li, W.
Li, W. Liu, Z. He, Z. Li, Angew. Chem. Int. Ed. 2011, 50, 2975;
Angew. Chem. 2011, 123, 3031; b) C. Qin, W. Zhou, F. Chen,
Y. Ou, N. Jiao, Angew. Chem. Int. Ed. 2011, 50, 12595; Angew.
Chem. 2011, 123, 12803; c) C. Qin, T. Shen, C. Tang, N. Jiao,
Angew. Chem. Int. Ed. 2012, 51, 6971; Angew. Chem. 2012, 124,
7077.
For reviews on aerobic oxidative reactions, see: a) S. S. Stahl,
Angew. Chem. Int. Ed. 2004, 43, 3400; Angew. Chem. 2004, 116,
3480; b) B. M. Stoltz, Chem. Lett. 2004, 33, 362; c) T. Punniya-
murthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329; d)
K. M. Gligorich, M. S. Sigman, Angew. Chem. Int. Ed. 2006,
45, 6612; Angew. Chem. 2006, 118, 6764; e) M. S. Sigman,
D. R. Jensen, Acc. Chem. Res. 2006, 39, 221; f) J. Muzart,
Chem. Asian J. 2006, 1, 508; g) E. M. Beccalli, G. Broggini, M.
Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318; h) J.
Acknowledgments
The authors wish to thank the National Natural Science Foudation
of China (NSFC) (grant numbers 21302188 and 91027033) and the
Chinese Academy of Sciences (grant numbers KJCX2-EW-N06-01
and XDA09030307) for their financial support.
[1] For reviews on C–C bond cleavage, see: a) K. C. Bishop III,
Chem. Rev. 1976, 76, 461; b) R. H. Crabtree, Chem. Rev. 1985,
85, 245; c) B. Rybtchinski, D. Milstein, Angew. Chem. Int. Ed.
1999, 38, 870; Angew. Chem. 1999, 111, 918; d) C.-H. Jun,
Chem. Soc. Rev. 2004, 33, 610; e) C.-H. Jun, J.-W. Park, Top.
Organomet. Chem. 2007, 24, 117; f) Y.-J. Park, J.-W. Park, C.-
H. Jun, Acc. Chem. Res. 2008, 41, 222; g) M. Tobisu, N. Chat-
4508
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 4504–4509