broadly extended to develop biocompatible fluorescent probes
for various metal ions of interest. Our research is now in
progress along this line.
This research was supported by the NSFC (20872032,
20972044), NCET (08–0175), and the Key Project of Chinese
Ministry of Education (No:108167).
Notes and references
Fig. 5 The variations of absorbance of probe 1 (10 mM) in 20 mM
HEPES buffer, pH 7.4, containing 40% CH3CN as a cosolvent in the
z Crystal data for probe 1: C36H52N2O2Si, M = 572.89, monoclinic,
space group P21/c, a = 19.8209(19), b = 13.1032(12), c = 13.9853(13) A,
a = 90.00, b = 108.316(2), g = 90.001, V = 3448.2(6) A3,
T = 293(2) K, Z = 4, Dc = 1.104 Mg mꢂ3, F000 = 1248, m(MoKa) =
0.100 mmꢂ1, l = 0.71073 A, 2ymax = 51.01. 17 917 reflections
measured, 6406 unique (Rint = 0.1102). The structures were solved
by direct methods and refined by a full-matrix least-squares technique
presence of 0 equiv. (’), 0.1 equiv. ( ), 0.5 equiv. ( ) and 5 equiv. (
)
Cu2+ as a function of time. (a) The variations of the absorbance in the
initial 30 min (notably, it took roughly 0.5 min to mix the solution and
record the spectra); (b) the variations of the absorbance from the
subsequent 30 min to 215 h. The absorbance was recorded around
558 nm at room temperature.
on F2 using the SHELXL97 program. Final GooF = 0.859, R1
0.0769, wR2 = 0.1948, R indices based on 2743 reflections and 375
refined parameters, with I 4 2s(I). CCDC 748393.
=
probe 1 is satisfactory for monitoring copper in environmental
water samples. Furthermore, probe 1 could also sense Cu2+ in
new born calf serum by simple visual inspection (Fig. S15w).
The utility of probe 1 for fluorescence imaging of Cu2+ in
living cells was investigated. Staining of nasopharyngeal
carcinoma cells with only probe 1 provided no significant
fluorescence (Fig. 6a). In Fig. 6b, the cells were pre-treated
with Cu2+ in the growth medium for 30 min. The cells were
then washed with PBS to remove the remaining Cu2+ and
further incubated with probe 1 for 30 min. The resulting
bright fluorescence image demonstrates that probe 1 with
suitable amphipathicity is cell membrane permeable and able
to display a fluorescence turn-on response to Cu2+ in the
living cells.
1 Some recent examples of reaction-based probes: (a) A. L. Garner,
C. M. St Croix, B. R. Pitt, G. D. Leikauf, S. Ando and K. Koide,
Nat. Chem., 2009, 1, 316; (b) A. Chatterjee, M. Santra, N. Won,
S. Kim, J. K. Kim, S. B. Kim and K. H. Ahn, J. Am. Chem. Soc.,
2009, 131, 2040; (c) D. Cho, J. H. Kim and J. L. Sessler,
J. Am. Chem. Soc., 2008, 130, 12163; (d) W. Lin, L. Long,
B. Chen and W. Tan, Chem.–Eur. J., 2009, 15, 2305;
(e) S. Sreejith, K. P. Divya and A. Ajayaghosh, Angew. Chem.,
Int. Ed., 2008, 47, 7883.
2 (a) D. P. Kennedy, C. M. Kormos and S. C. Burdette, J. Am.
Chem. Soc., 2009, 131, 8578; (b) G. Ajayakumar, K. Sreenath and
K. R. Gopidas, Dalton Trans., 2009, 1180; (c) N. C. Lim,
S. V. Pavlova and C. Bruckner, Inorg. Chem., 2009, 48, 1173.
¨
3 (a) M. C. Linder and M. Hazegh-Azam, Am. J. Clin. Nutr., 1996,
63, 797S; (b) R. Uauy, M. Olivares and M. Gonzalez, Am. J. Clin.
Nutr., 1998, 67(suppl), 952S.
4 L. Wu and K. Burgess, J. Org. Chem., 2008, 73, 8711.
5 (a) S. Kweon, H. Kim, Z. Lee, S. Kim, S. Kim, S. Paik and K. Ha,
Biosci. Rep., 2001, 21, 341; (b) J. E. Whitaker, P. L. Moore,
R. P. Haugland and R. P. Haugland, Biochem. Biophys. Res.
Commun., 1991, 175, 387.
The desirable features of probe 1 include high sensitivity and
selectivity for Cu2+, working well in biocompatible conditions,
the clean and complete oxidation reaction mediated by Cu2+
,
6 For some recent examples of fluorescence ‘‘turn-off’’ Cu2+ probes,
see: (a) H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong,
J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo and J. S. Kim,
J. Am. Chem. Soc., 2009, 131, 2008; (b) M. Yu, Z. Li, L. Wei,
D. Wei and M. Tang, Org. Lett., 2008, 10, 5115; (c) S. H. Kim,
J. S. Kim, S. M. Park and S. K. Chang, Org. Lett., 2006, 8, 371;
(d) B. C. Roy, B. Chandra, D. Hromas and S. Mallik, Org. Lett.,
2003, 5, 11; (e) M. Boiocchi, L. Fabbrizzi, M. Licchelli, D. Sacchi,
M. VTzquez and C. Zampa, Chem. Commun., 2003, 1812;
(f) Y. Zheng, J. Orbulescu, X. Ji, F. M. Andreopoulos,
S. M. Pham and R. M. Leblanc, J. Am. Chem. Soc., 2003, 125,
2680.
and satisfactory stability in the open air. Notably, one striking
character of probe 1 is a fluorescence turn-on response by
circumventing the intrinsic fluorescence quenching nature of
paramagnetic Cu2+. This may be considered as the advantage
of the metal-oxidation based probe development strategy.
In conclusion, we have created a novel type of fluorescent
copper probe 1 based on the new copper-mediated dihydro-
rosamine oxidation reaction, and the probe has been employed
to sense Cu2+ in water, new born calf serum, and living cells.
Notably, probe 1 represents the first fluorescence turn-on
probe on the basis of metal-mediated oxidation that can work
in biological conditions. Furthermore, we also proposed that
the novel copper-mediated dihydrorosamine oxidation reac-
tion likely proceeds by a copper redox mechanism. We expect
that the general metal-mediated oxidation approach could be
7 For some recent examples of fluorescence ‘‘turn-on’’ Cu2+ probes,
see: (a) M. Yu, M. Shi, Z. Chen, F. Li, X. Li, Y. Gao, J. Xu,
H. Yang, Z. Zhou, T. Yi and C. Huang, Chem.–Eur. J., 2008, 14,
6892; (b) K. M. K. Swamy, S. Ko, S. K. Kwon, H. N. Lee, C. Mao,
J. Kim, K. Lee, J. Kim, I. Shin and J. Yoon, Chem. Commun.,
2008, 5915; (c) J. W. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129,
9838; (d) W. Lin, L. Yuan, W. Tan, J. Feng and L. Long,
Chem.–Eur. J., 2009, 15, 1030; (e) Z. C. Wen, R. Yang, H. He
and Y. B. Jiang, Chem. Commun., 2006, 106; (f) R. Martinez,
F. Zapata, A. Caballero, A. Espinosa, A. Tarraga and P. Molina,
Org. Lett., 2006, 8, 3235; (g) L. Zeng, E. W. Miller, A. Pralle,
E. Y. Isacoff and C. J. Chang, J. Am. Chem. Soc., 2006, 128, 10;
(h) Y. Xiang, A. J. Tong, P. Y. Jin and Y. Ju, Org. Lett., 2006, 8,
2863; (i) Z. C. Xu, Y. Xiao, X. H. Qian, J. N. Cui and D. W. Cui,
Org. Lett., 2005, 7, 889; (j) Q. Wu and E. V. Anslyn, J. Am. Chem.
Soc., 2004, 126, 14682.
Fig. 6 Fluorescence and brightfield images of cells. (a) Cells stained
with probe 1 (10 mM) for 30 min at 37 1C; (b) cells pre-treated with
Cu2+ (5 equiv.) for 30 min at 37 1C and then further incubated with
probe 1 (10 mM) for 30 min at 37 1C; (c) brightfield image of cells
shown in pane b; (d) an overlay image of (b) and (c). The cell culture
and imaging conditions are in accordance with those in ref. 6a,7a,b,g.
8 J. Popko, S. Olszewski, K. Huka"owicz, R. Markiewicz,
M. H. Borawska and P. Szeparowicz, Polish J. Environ. Stud.,
2003, 12, 375.
9 Y. Li and M. A. Trush, Arch. Biochem. Biophys., 1993, 300, 346.
10 A. Besada, Anal. Lett., 1988, 21, 1917.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1311–1313 | 1313