1700
D. Z. Al Kremawi et al. / Tetrahedron Letters 51 (2010) 1698–1701
into aldehyde 26 by changing the protecting group to acetate fol-
lowed by oxidative cleavage (Scheme 6).
Finally, coupling of 26 and 18 in the presence of base led to the
protected epoxy-mycolic acid 27, using the method described ear-
lier.18 Compound 27 could be deprotected to 28 (Scheme 7). In the
same way 29 was obtained from 19. Compound 28 showed signals
for the two epoxide hydrogens at d 2.73 (1H, dt, J 2.2, 5.4 Hz) and
2.43 (1H, dd, J 2.2, 7.3 Hz) and for the two methyl signals at d 1.0
and 0.94. The carbons of the epoxide appeared at d 63.99 and
59.00 in the 13C NMR spectrum.22 Epoxy-mycolates present in M.
smegmatis are reported to show a double doublet at d 2.43 and a
broad triplet at d 2.72 and methyl signals at d 1.02 and 0.92.23
An earlier paper reports the chemical shifts as d 2.39 and 2.695,
with the signal for the methyl adjacent to the epoxide appearing
at d 0.98 and that adjacent to the alkene at d 0.92; the epoxide car-
bons are reported to appear at d 63.7 and 58.6.6 Compound 29
showed similar spectra to those of 28 but showed differences in
detailed chemical shifts;24 thus the epoxide carbons appeared at
d 63.91 and 57.60 and the methyl group signals corresponding to
those mentioned above occurred at d 0.94 and 0.92.
tBuMe2SiO
O
O
N
N
N
CO2Me
S
O
(CH2)17
O
+
O
N
(CH2)21CH3
20
24
23
α
[
]
D= +12.5
Ph
(i), (ii)
This method produces an epoxy-MA 28 with the same chain
lengths as those reported for one natural example, and molecular
rotations for fragments which are consistent with those reported.
Moreover, by simple variation the method can be adjusted to pro-
vide an epoxy-MA of any necessary chain length and varying abso-
lute stereochemistry.
tBuMe2SiO
O
O
CO2Me
18
(CH2)21CH3
25
20
α
]
[
D= +4.4
Acknowledgement
(iii)-(v)
We thank the Government of Iraq for the award of a grant to
D.K. Al Z.
OAc
O
CO2Me
References and notes
H
18
25
(CH2)21CH3
1. Minnikin, D. E. In The Biology of the Mycobacteria; Ratledge, C., Stanford, J., Eds.;
Academic Press: San Diego, 1982; pp 95–184.
α
[
]
D=+4.9
26
2. Watanabe, M.; Aoyagi, Y.; Ridell, M.; Minnikin, D. E. Microbiology 2001, 147,
1825–1837.
Scheme 6. Reagents and conditions: (i) LiBSA, THF, ꢀ10 °C (89%); (ii) H2, Pd/C, IMS,
THF (95%); (iii) HFꢁpyridine, pyridine, THF (80%); (iv) Ac2O, pyridine, toluene (98%);
(v) HIO4, Et2O (64%).
3. Watanabe, M.; Aoyagi, Y.; Mitome, H.; Fujita, T.; Naoki, H.; Ridell, M.; Minnikin,
D. E. Microbiology 2002, 148, 1881–1902.
4. Heath, R. J.; White, S. W.; Rock, C. O. Appl. Microbiol. Biotechnol. 2002, 58, 695–
703.
5. Daffé, M.; Lanéelle, M. A.; Puzo, G.; Asselineau, C. Tetrahedron Lett. 1981, 22,
4515–4516.
6. Minnikin, D. E.; Minnikin, S. M.; Goodfellow, M. Biochim. Biophys. Acta 1982,
712, 817–822.
N
N
O
(CH)13SO2
7. Minnikin, D. E.; Minnikin, S. M.; O’Donnell, A. G.; Goodfellow, M. J. Gen.
Microbiol. 1984, 2, 243–249.
N
CH3(CH2)15
N
18
8. Minnikin, D. E.; Minnikin, S. M.; Parlett, J. H.; Goodfellow, M.; Magnusson, M.
Arch. Microbiol. 1984, 139, 225–231.
9. Minnikin, D. E.; Minnikin, S. M.; Hutchinson, I. G.; Goodfellow, M.; Grange, G.
M. J. Gen. Microbiol. 1984, 130, 363–367.
10. Luquin, M.; Lanéelle, M. A.; Ausina, V.; Barcelo, G. M.; Belda, F.; Alonso, C.;
Prats, G. Int. J. Syst. Bact. 1991, 41, 390–394.
OAc
O
Ph
(CH2)19
OMe
(CH2)21CH3
OHC
+
26
(i)
11. Dinadayala, P.; Laval, F.; Raynaud, C.; Lemassu, A.; Lanéelle, M.-A.; Lanéelle, G.;
Daffé, M. J. Biol. Chem. 2003, 278, 7310–7319.
12. Laval, F.; Lanéelle, M.-A.; Deon, C.; Monsarrat, B.; Daffé, M. Anal. Chem. 2001,
73, 4537–4544.
O
OAc
O
OMe
(CH2)21CH3
(CH2)19
13. Laval, F.; Haites, R.; Movahedzadeh, F.; Lemassu, A.; Wong, C. Y.; Stoker, N.;
Billman-Jacobe, H.; Daffe, M. J. Biol. Chem. 2008, 283, 1419–1427.
14. Lacave, C.; Lanéelle, M.-A.; Montrozier, H.; Rols, M.-P.; Asselineau, C. Eur. J.
Biochem. 1987, 163, 369–378.
(CH2)12
CH3(CH2)15
27
25
α
[
]
D = -2.0
15. Al Dulayymi, J. R.; Baird, M. S.; Roberts, E. Chem. Commun. 2003, 228–229; Al
Dulayymi, J. R.; Baird, M. S.; Roberts, E. Tetrahedron 2005, 61, 11939–11951.
16. Al Dulayymi, J. R.; Baird, M. S.; Roberts, E.; Deysel, M.; Verschoor, J. Tetrahedron
2007, 63, 2571–2592.
(ii)
OH
O
17. Al-Dulayymi, J. R.; Baird, M. S.; Mohammed, H.; Roberts, E.; Clegg, W.
Tetrahedron 2006, 62, 4851–4862.
18. Koza, G.; Rowles, R.; Theunissen, C.; Al Dulayymi, J. R.; Baird, M. S. Tetrahedron
Lett. 2009, 50, 7259–7262.
O
(CH2)19
OH
(CH2)21CH3
(CH2)12
CH3(CH2)15
20
α
]
[
D = -5.5
28
19. Asselineau, C.; Asselineau, J.; Lanéelle, G.; Lanéelle, M.-A. Prog. Lipid Res. 2002,
41, 501–523.
OH
specific rotation of ½ ꢂ ꢀ13.1 (c 1.2, CHCl3),
a 2D0
O
20. The bromide 17 gave
a
corresponding to an [M]D of ꢀ98. Since the chiral centres are flanked by long
chains, this may be used as a means of predicting [M]D and hence ½a D20
ꢂ
values
(CH2)19
O
OH
(CH2)21CH3
(CH2)12
of molecules containing this fragment.
CH3(CH2)15
21. Koza, G.; Theunissen, C.; Al Dulayymi, J. R.; Baird, M. S. Tetrahedron 2009, 65,
29
20
10214–10229.
α
[
]
D = + 6.0
22. Compound 28, mp = 71–73 °C, ½a D20
ꢂ
ꢀ5.5, (c 0.74, CHCl3). Found [M+Na]+:
1204.1912; C80H156NaO4 requires: 1204.1896. dH (500 MHz, CDCl3): 5.33 (1H,
td, J 6.3, 15.1 Hz), 5.24 (1H, dd, J 7.6, 15.1 Hz), 3.74–3.70 (1H, m), 2.73 (1H, dt, J
2.2, 5.4 Hz), 2.49–2.45 (1H, m), 2.43 (1H, dd, J 2.2, 7.3 Hz), 2.11–2.01 (2H, m),
Scheme 7. Reagents and conditions: (i) KBSA, 1,2-dimethoxyethane, ꢀ5 °C (26%);
(ii) LiOH, THF, H2O, MeOH, 45 °C (70%).