92
Letters in Organic Chemistry, 2010, Vol. 7, No. 1
Mamane et al.
hydroxybenzo[h]quinoline. Chem. Commun., 2006, 4395. (c)
Riesgo, E. C.; Hu, Y.-Z.; Bouvier, F.; Thummel, R. P. Crowded
Cu(I) complexes involving benzo[h]quinoline: ꢀ-stacking effects
and long-lived excited states. Inorg. Chem., 2001, 40, 3413. (d)
Matsumiya, H.; Hoshino, H.; Yotsuyanagi, T. A novel fluorescence
reagent, 10-hydroxybenzo[h]quinoline-7-sulfonate, for selective
determination of beryllium(II) ion at pg cm–3 levels. Analyst, 2001,
126, 2082. (e) Chou, P.-T.; Wei, C.-Y. Photophysics of 10-
hydroxybenzo[h]quinoline in aqueous solution. J. Phys. Chem.,
1996, 100, 17059.
For recent examples see: (a) Baratta,W.; Ballico, M.; Baldino, S.;
Chelucci, G.; Herdtweck, E.; Siega, K.; Magnolia, S.; Rigo, P. New
benzo[h]quinoline-based ligands and their pincer ru and os
complexes for efficient catalytic transfer hydrogenation of carbonyl
compounds. Chem. Eur. J., 2008, 14, 9148. (b) Malkov, A. V.;
Westwater, M.-M.; Gutnov, A.; Ramirez-Lopez, P.; Friscourt, F.;
Kadlcikova, A.; Hodacova, J.; Rankovic, Z.; Kotora, M.;
Kocovsky, P. New pyridine N-oxides as chiral organocatalysts in
the asymmetric allylation of aromatic aldehydes. Tetrahedron,
2008, 64, 11335. (c) Prema, D.; Wiznycia, A. V.; Scott, B. M. T.;
Hilborn, J.; Desper, J.; Levy, C. J. Dinuclear zinc(II) complexes of
symmetric Schiff-base ligands with extended quinoline sidearms.
Dalton Trans., 2007, 4788.
For recent examples see: (a) Cheng, K.; Zhang, Y.; Zhao, J.; Xie,
C. Peroxide-promoted regioselective arylation of 2-phenylpyridines
and related substrates with aryl iodides. Synlett, 2008, 1325. (b)
Hull, K. L.; Sanford, M. S. Catalytic and highly regioselective
cross-coupling of aromatic CꢁH substrates. J. Am. Chem. Soc.,
2007, 129, 11904. (c) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu,
J.-Q. Cu(II)-Catalyzed functionalizations of aryl CꢁH Bonds using
O2 as an oxidant. J. Am. Chem. Soc., 2006, 128, 6790. (d)
Shabashov, D.; Daugulis, O. Catalytic coupling of CꢁH and CꢁI
bonds using pyridine as a directing group. Org. Lett., 2005, 7,
3657. (e) Dick, A. R.; Hull, K. M.; Sanford, M. S. A highly
selective catalytic method for the oxidative functionalization of
CꢁH bonds. J. Am. Chem. Soc., 2004, 126, 2300.
(a) Arai, S.; Ishikura, M.; Sato, K.; Yamagishi, T. Synthesis of new
azonia-helicenes with a quaternary nitrogen at the inner helix
skeleton. J. Heterocycl. Chem., 1995, 32, 1081. (b) Yao, M.;
Asakura, S.; Abe, M.; Inoue, H.; Yoshioka, N. Formation of a one-
dimensional stacking structure of ꢀ-conjugated nitroxyl radical
bearing a 1,2,5-thiadiazole ring and its magnetic property. Cryst.
Growth Des., 2005, 5, 413.
(a) Cho, S. H.; Hwang, S. J.; Chang, S. Palladium-catalyzed CꢁH
functionalization of pyridine n-oxides: highly selective alkenylation
and direct arylation with unactivated arenes. J. Am. Chem. Soc.,
2008, 130, 9254. (b) Clot, E.; Eisenstein, O.; Dube, T.; Faller, J.
W.; Crabtree, R. H. Interplay of weak interactions: an iridium(III)
system with an agostic tert-butyl but a nonagostic isopropyl group.
Organometallics, 2002, 21, 575. (c) Chelucci, G.; Medici, S.; Saba,
A. Steric effects of the ligand in the enantioselective palladium-
catalyzed allylic alkylation using chiral oxazolinylpyridines.
Tetrahedron Asymmetry, 1999, 10, 543.
Mamane, V.; Louërat, F.; Iehl, J.; Abboud, M.; Fort, Y. A general
and efficient method for the synthesis of benzo-(iso)quinoline
derivatives. Tetrahedron, 2008, 64,10699.
(a) Mamane, V.; Fort, Y. Convenient access to new chiral
ferroceno-(iso)quinolines. J. Org. Chem., 2005, 70, 8220. (b)
Mamane, V.; Fort, Y. A cascade process toward the synthesis of
fused polycyclic dihydropyridines. Tetrahedron Lett., 2006, 47,
2337.
dipyridylpiperazines. Synlett, 2006, 1379. (b) Loüerat, F.; Gros, P.;
Fort, Y. First selective lithiation of pyridylpiperazines:
straightforward access to potent pharmacophores. Tetrahedron,
2005, 61, 4761. (c) Gros, P.; Loüerat, F.; Fort, Y. First direct
lithiation of 2-pyridylpiperazine on solid phase. Org. Lett., 2002, 4,
1759.
[11]
General procedure: n-Butyllithium (2.5M in hexane, 7.15 mL, 17.6
mmol) was added dropwise to
a
solution of 2-
dimethylaminoethanol (0.89 mL, 8.8 mmol) in toluene (10 mL) at -
5 °C. After 30 min of stirring, the mixture was allowed to cool to -
78 °C. A solution of benzoquinoline (200 mg, 1.1 mmol) in toluene
(2 mL) was then added dropwise. The solution was stirred for 16-
24 h at -78°C and then treated at -78 °C with a solution of the
appropriate electrophile (11 mmol) in THF (10 mL). The
temperature was maintained at -78 °C for 1 h and at 0 °C for 30
min. Hydrolysis was then performed at 0°C (3 mL). The organic
phase was separated and washed with water. After drying over
MgSO4 and evaporation of the solvent, the crude product was
purified by column chromatography. 3-Chloro-benzo[f]quinoline
[2]
(3): 1H NMR (CDCl3) ꢀ 8.82 (d, J = 8.5Hz, 1H), 8.51 (d, J =
8.3Hz, 1H), 7.86-8.01 (m, 2H), 7.65-7.70 (m, 2H), 7.51 (d, J =
8.5Hz, 1H); 13C NMR (CDCl3) ꢀ 122.2, 122.6, 124.1, 127.1, 127.6,
127.7, 128.9, 129.2, 131.6, 132.2, 133.7, 148.2, 150.4; MS (EI) m/z
1
214 (100, M+), 178 (65). 3-Bromo-benzo[f]quinoline (4): H NMR
[3]
(CDCl3) ꢀ 8.71 (d, J = 8.3Hz, 1H), 8.51 (d, J = 8.1Hz, 1H), 7.87-
8.00 (m, 3H), 7.62-7.70 (m, 3H); 13C NMR (CDCl3) ꢀ 122.7, 124.4,
125.7, 127.1, 127.6, 127.8, 128.9, 129.3, 131.7, 132.2, 133.3,
141.5, 148.9; MS (EI) m/z 259 (50, M+[79Br]), 257 (50, M+[81Br]),
178 (100), 151 (60). HRMS m/z calcd for C13H8BrN: 256.9840,
found 257.9932 (MH+). 3-Phenylthio-benzo[f]quinoline (5): 1H
NMR (CDCl3) ꢀ 8.67 (d, J = 8.7Hz, 1H), 8.47 (d, J = 8.1Hz, 1H),
7.86-7.98 (m, 3H), 7.59-7.72 (m, 4H), 7.45-7.90 (m, 3H), 7.11 (d, J
= 8.7Hz, 1H); 13C NMR (CDCl3) ꢀ 119.3, 122.3, 122.6, 127.0,
127.3, 127.5, 128.8, 129.4, 129.6, 129.8, 130.4, 130.9, 131.4,
131.5, 133.1, 135.3, 137.7; MS (EI) m/z 286(100, M+), 151 (18). 3-
(Bis-methylthio-methylthio)-benzo[f]quinoline (6): 1H NMR
(CDCl3) ꢀ 8.97 (d, J = 8.2Hz, 1H), 8.62 (d, J = 8.0Hz, 1H), 7.94-
8.00 (m, 3H), 7.60-7.76 (m, 3H), 5.88 (s, 1H), 1.66 (s, 6H); 13C
[4]
[5]
NMR (CDCl3) ꢀ 30.8, 71.8, 117.1, 118.7, 122.7, 124.1, 127.2,
127.3, 127.8, 128.7, 129.5, 131.3, 131.7, 132.2, 145.9. MS (EI) m/z
222 (100, [M-(SCH3)2]), 180 (25), 151 (16).
Mamane, V.; Aubert, E.; Fort, Y. The methyl group as a source of
structural diversity in heterocyclic chemistry: side-chain
functionalization of picolines and related heterocycles. J. Org.
Chem., 2007, 72, 7294.
[12]
[13]
General procedure: To a solution of benzoquinoline (200 mg, 1.1
mmol) and DME (0.12 mL, 1.1 mmol) in ether (10 mL) at room
temperature was added dropwise n-butyllithium (2.5M in hexane,
0.54 mL, 1.32 mmol). After 2h of stirring, water was added and the
organic phase was separated, dried over MgSO4 and evaporated.
When the rearomatization was incomplete (shown by 1H NMR),
the crude product was dissolved in dichloromethane (5 mL) and
treated with MnO2 (191 mg, 2.2 mmol) at room temperature for 2h.
The black mixture was adsorbed on silica gel and purified by
[6]
[7]
1
column chromatography. 3-Butyl-benzo[f]quinoline (9): H NMR
(CDCl3) ꢀ 8.45 (d, J = 8.3Hz, 1H), 8.25 (d, J = 7.6Hz, 1H), 7.92 (d,
J = 8.2Hz, 1H), 7.67-7.79 (m, 2H), 7.41-7.46 (m, 2H), 7.11 (d, J =
8.3Hz, 1H), 2.90 (t, J = 5.5Hz, 2H), 1.74 (q, J = 5.5Hz, 2H), 1.40
(q, J = 5.5Hz, 2H), 0.93 (t, J = 5.5Hz, 3H); 13C NMR (CDCl3) ꢀ
13.8, 22.5, 32.0, 38.4, 120.7, 122.0, 123.0, 126.3, 126.5, 127.7,
128.2, 129.3, 130.2, 130.4, 130.9, 174.4, 162.1; MS (EI) m/z 235
(3, M+), 193(100). 2-Butyl-benzo[h]quinoline (10): 1H NMR
(CDCl3) ꢀ 9.38 (d, J = 7.5Hz, 1H), 7.92 (d, J = 7.9Hz, 1H), 7.82 (d,
J = 7.6Hz, 1H), 7.51-7.68 (m, 4H), 7.26 (d, J = 7.0Hz, 1H), 3.02 (t,
J = 5.5Hz, 2H), 1.87 (q, J = 5.5Hz, 2H), 1.43 (q, J = 5.5Hz, 2H),
0.97 (t, J = 5.5Hz, 3H); 13C NMR (CDCl3) d 14.1, 22.6, 31.8, 38.7,
121.5, 124.2, 124.6, 125.2, 126.4, 126.6, 127.6, 127.8, 131.5,
133.6, 135.6, 145.8, 161.5; MS (EI) m/z 235 (7, M+), 193 (100).
(a) Louërat, F.; Fort, Y.; Mamane, V. Direct 1,4-difunctionalization
of isoquinoline. Tetrahedron Lett., 2009, 50, 5716. (b) Alexakis,
A.; Amiot, F. Enantioselective addition of organolithium reagents
on isoquinoline. Tetrahedron Asymmetry, 2002, 13, 2117.
[8]
(a) Gros, P.; Fort, Y. Combinations of alkyllithiums and lithium
aminoalkoxides for generation of functional pyridine
organometallics and derivatives. Eur. J. Org. Chem., 2009, 4199.
(b) Gros, P.; Fort, Y. nBuLi/lithium aminoalkoxide aggregates:
new and promising lithiating agents for pyridine derivatives. Eur. J.
Org. Chem., 2002, 3375. (c) Gros, P.; Fort, Y.; Quéguiner, G.;
Caubère, P. Aggregative activation and heterocyclic chemistry III.
Unusual
regioselective
lithiation
of 2-alkoxy-pyridines.
Tetrahedron Lett., 1995, 36, 4791.
[14]
[15]
[9]
Gros, P.; Fort, Y.; Caubère, P. Aggregative activation in
heterocyclic chemistry. Part 5. Lithiation of pyridine and quinoline
with the complex base BuLi·Me2N(CH2)2OLi (BuLi·LiDMAE). J.
Chem. Soc. Perkin Trans. 1, 1997, 24, 3597.
Excess of n-BuLi-LiDMAE was shown to be necessary with other
substrates, see: (a) Loüerat, F.; Gros, P.; Fort, Y. Metallation versus
heteroatom lithium complexation: mono- and -dilithiation of
Compound 11 is commercially available and can be purchased
from Alfa Aesar.
[10]