ORGANIC
LETTERS
2010
Vol. 12, No. 9
2120-2122
Asymmetric, Organocatalytic, Three-Step
Synthesis of r-Hydroxy-(E)-ꢀ,γ-
unsaturated Esters
Lindsey C. Hess and Gary H. Posner*
Department of Chemistry, Johns Hopkins UniVersity, 3400 North Charles Street,
Baltimore, Maryland 21218
Received March 15, 2010
ABSTRACT
An efficient and enantiocontrolled three-step synthesis of r-hydroxy-(E)-ꢀ,γ-unsaturated esters is reported. Enantioenriched r-selenyl aldehydes,
prepared in one step by asymmetric, organocatalytic r-selenylation of aldehydes, were directly subjected to a Wittig reaction followed by
allylic selenide to selenoxide oxidation and final spontaneous [2,3]-sigmatropic rearrangement to yield the target compounds in 43-65%
overall yield and in 94-97% ee.
Asymmetric synthesis utilizing organoselenium compounds
has become increasingly popular in recent years.1 Selenium
incorporation can be done in either a nucleophilic or an
electrophilic fashion.2 Once selenium is introduced into the
molecule, many different chemical transformations can occur
including oxidations leading to either syn-elimination3 or,
in the case of an allylic selenide, [2,3]-sigmatropic rear-
rangement to give an allylic alcohol.4 Pursuing our recently
published work preparing chiral nonracemic γ-hydroxy-(E)-
R,ꢀ-unsaturated sulfones and esters,5 we have developed a
complementary asymmetric synthetic method producing
R-hydroxy-(E)-ꢀ,γ-unsaturated esters.
R-Hydroxy esters and their corresponding acids are key
structural units of valuable synthetic intermediates as well
as natural products.1,6 On the basis of the utility of these
structural units, we set out to design a simple, asymmetric
general strategy for their synthesis. Suprisingly, most reports
of selenium oxidation and [2,3]-sigmatroptic rearrangements
have been done utilizing chiral oxidants as opposed to
installing chirality prior to oxidation.7 There have been a
few reports involving diastereoselective oxidations of se-
lenides containing chiral moieties,8 but the scope is quite
(6) Tamura, Y.; Yakura, T.; Haruta, J. I.; Kita, Y. Tetrahedron Lett.
1985, 26, 3837. (b) Tamura, Y.; Annoura, H.; Yamamoto, H.; Kondo, H.;
Kita, Y.; Fujioka, H. Tetrahedron Lett. 1987, 28, 5709. (c) Takanami, T.;
Tokoro, H.; Kato, D. I.; Nishiyama, S.; Sugai, T. Tetrahedron Lett. 2005,
46, 3291. (d) Hong, Y. T.; Cho, C. W.; Skucas, E.; Krische, M. Org. Lett.
2007, 9, 3745. (e) Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1973,
95, 553. (f) Masamune, T. I.; Ono, M.; Matsue, H. Bull. Chem. Soc. Jpn.
1975. (g) Coppola, G. M.; Schuster, H. F. R-Hydroxy Acids in Enantio-
(1) Wirth, T. Tetrahedron 1999, 55, 1.
(2) (a) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697.
(b) Sharpless, K. B.; Young, M. W. J. Org. Chem. 1975, 40, 947. (c) Grieco,
P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485. (d) Tomoda,
S.; Nomura, Y. Chem. Lett. 1981, 1069.
(3) (a) Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 41, 1396.
(b) Nicalaou, K. C.; Lysenko, Z. J. Am. Chem. Soc. 1977, 99, 3185. (c)
Friedrich, L. E.; Lam, P. Y. S. J. Org. Chem. 1981, 46, 306. (d) Scarborough,
R. M.; Smith, A. B. Tetrahedron Lett. 1977, 18, 4361. (e) Liotta, D.;
Markiewicz, W.; Santiesteban, H. Tetrahedron Lett. 1977, 18, 4365.
(4) (a) Reich, H. J. J. Org. Chem. 1975, 40, 2570. (b) Clive, D. L.;
Chittattu, G.; Curtis, N. J.; Menchen, S. M. J. Chem. Soc., Chem. Commun.
1978, 770.
selectiVe Synthesis; VCH: Weinheim, 1997.
(7) (a) Davis, F. A.; Stringer, O. D.; McCauley, J. P. Tetrahedron 1985,
41, 4747. (b) Reich, H. J.; Yelm, K. E. J. Org. Chem. 1992, 57, 5672. (c)
Davis, F. A.; Reddy, R. T. J. Org. Chem. 1992, 57, 2599. (d) Komatsu, N.;
Nishibayashi, Y.; Sugita, T.; Uemura, S. J. J. Chem. Soc., Chem. Commun.
1992, 46. (e) Komatsu, N.; Matsunaga, S.; Sugita, T.; Uemura, S. J. Org.
Chem. 1993, 58, 3697. (f) Komatsu, N.; Nishibayashi, Y.; Sugita, T.;
Uemura, S. J. Am. Chem. Soc. 1993, 115, 5847. (g) Komatsu, N.;
Nishibayashi, Y.; Uemura, S. Tetrahedron Lett. 1993, 34, 2339.
(5) Petersen, K. S.; Posner, G. H. Org. Lett. 2008, 10, 4685.
10.1021/ol100615j 2010 American Chemical Society
Published on Web 04/08/2010