Improved Chiral Olefin Metathesis Catalysts
FULL PAPERS
and the solvent was evaporated. Further purification by
flash chromatography was performed if needed (1–5% Et2O
in pentane).
Boydston, Y. Xia, J. A. Kornfield, I. A. Gorodetskaya,
R. H. Grubbs, J. Am. Chem. Soc. 2008, 130, 12775–
12782.
[8] For other studies on N-alkyl-substituted NHCs in meta-
thesis see: a) A. Fꢃrstner, B. Gabor, R. Goddard, W. L.
Christian, R. Mynott, F. Stelzer, R. T. Oliver, Chem.
Eur. J. 2001, 7, 3236; b) A. Fꢃrstner, H. Krause, L. Ac-
kermann, C. W. Lehmann, Chem. Commun. 2001, 2240;
c) S. Pruhs, C. W. Lehmann, A. Fꢃrstner, Organometal-
lics 2004, 23 280; d) K. Velhlow, S. Maechling, S. Ble-
chert, Organometallics 2006, 25, 25.
[9] A reductive amination protocol was also investigated
but often produced a complex mixture of by-products
that were difficult to separate from the desired product,
resulting in unreproducible yields.
Acknowledgements
We thank the NSERC (Canada), FQRNT (Quꢁbec), CFI
(Canada), Boehringer Ingelheim (Canada) Ltd., Merck
Frosst Centre for Therapeutic Research and the Universitꢁ de
Montrꢁal for generous financial support.
References
[10] The N-alkylation was very sensitive. Both Na2CO3 and
Cs2CO3 were ineffective as bases and other polar sol-
vents (THF, DMF) were less effective.
[1] For recent reviews on asymmetric olefin metathesis
see: a) A. H. Hoveyda, in: Handbook of Metathesis,
(Ed.: R. H. Grubbs), Wiley-VCH, Weinheim, 2003,
Vol. 2, Chapters 2 and 3; b) R. R. Schrock, A. H. Hov-
eyda, Angew. Chem. 2003, 115, 4740–4782; Angew.
Chem. Int. Ed. 2003, 42, 4592–4633; c) A. H. Hoveyda,
R. R. Schrock, Chem. Eur. J. 2001, 7, 945–950;
d) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450,
243–251.
[2] a) T. J. Seiders, D. W. Ward, R. H. Grubbs, Org. Lett.
2001, 3, 3225–3228; b) T. W. Funk, J. M. Berlin, R. H.
Grubbs, J. Am. Chem. Soc. 2006, 128, 1840–1846;
c) J. M. Berlin, S. D. Goldberg, R. H. Grubbs, Angew.
Chem. 2006, 118, 7753–7757; Angew. Chem. Int. Ed.
2006, 45, 7591–7595.
[3] A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen,
O. Kataoka, S. B. Garber, J. S. Kingsbury, J. P. Harrity,
Org. Biomol. Chem. 2004, 2, 8–23.
[4] a) J. J. Van Veldhuizen, S. B. Garber, J. S. Kingsbury,
A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 4954–
4955; b) J. J. Van Veldhuizen, D. G. Gillingham, S. B.
Garber, O. Kataoka, A. H. Hoveyda, J. Am. Chem.
Soc. 2003, 125, 12502–12508; c) J. J. Van Veldhuizen,
J. E. Campbell, R. E. Giudici, A. H. Hoveyda, J. Am.
Chem. Soc. 2005, 127, 6877–6882.
[11] Due to the thermal instability observed with other cat-
alysts containing the N-alkyl-substituted NHCs, we at-
tempted to prepare the catalysts using as little heating
as possible. However, no catalyst formation was ob-
served when conducting the reaction at room tempera-
ture. Heating of the reaction at lower temperatures
(408C) or heating the reaction mixture to 608C fol-
lowed by cooling to room temperature also failed to
produce catalyst.
[12] Catalyst stability was measured by 1H NMR and was
determined as the amount of time elapsed before all
benzylidene signals had disappeared.
[13] K. Vehlow, S, Gessler, S, Blechert, Angew. Chem.
2007, 119, 8228–8231; Angew. Chem. Int. Ed. 2007, 46,
8082–8085.
[14] I. C. Stewart, C. J. Douglas, R. H. Grubbs, Org. Lett.
2008, 10, 441–444.
[15] The starting material undergoes a competitive isomeri-
zation reaction. This has been previously observed by
Grisi and co-workers. See ref.[6]
[16] The influence of the syn:anti ratios of the catalysts on
the asymmetric induction is difficult to predict at the
current time due to the fact that the syn:anti isomers
cannot be separated.
[17] a) C. Costabile, L. Cavallo, J. Am. Chem. Soc. 2004,
126, 9592–9600; b) A. Correa, L. Cavallo, J. Am.
Chem. Soc. 2006, 128, 13352–13353.
[5] a) P.-A. Fournier, J. Savoie, B. Stenne, M. Bꢀdard, A.
Grandbois, S. K. Collins, Chem. Eur. J. 2008, 14, 8690–
8695; b) P.-A. Fournier, S. K. Collins, Organometallics
2007, 26, 2945–2949.
[18] a) D. R. Anderson, D. J. OꢂLeary, R. H. Grubbs, Chem.
Eur. J. 2008, 14, 7536–7544; b) D. R. Anderson, D. D.
Hickstein, D. J. OꢂLeary, R. H. Grubbs, J. Am. Chem.
Soc. 2006, 128, 8386–8387. See also refs.[2a,2b]
[6] For a recent report of another chiral Ru-based catalyst
bearing N-alkyl groups see: F. Grisi, C. Costabile, E.
Gallo, A. Mariconda, C. Tedesco, P. Longo, Organome-
tallics 2008, 27, 4649–4656.
[19] M. Bornand, P. Chen, Angew. Chem. 2005, 117, 8123–
8125; Angew. Chem. Int. Ed. 2005, 44, 7909–7911.
[20] For a review of efforts to improve catalyst efficiency
through NHC modification see a) E. Colacino, J. Marti-
nez, F. Lamaty, Coord. Chem. Rev. 2007, 251, 726–764.
For examples of electronic and steric modification in
asymmetric olefin metathesis, see ref.[4b] For metathesis
catalysts bearing thiazol-2-ylidene ligands see: b) G. C.
Vougioukalakis, R. H. Grubbs, J. Am. Chem. Soc. 2008,
130, 2234–2245. For examples of six-membered NHC
ligands or cyclohexane-annelated ligands see: c) K.
Weigl, K. Koehler, S. Dechert, F. Meyer, Organometal-
lics 2005, 24, 4049–4056; d) L. Yang, M. Mayr, K.
[7] However, other Ru-based olefin metathesis catalysts
bearing NHC ligands adorned with N-alkyl substituents
have been reported to be stable; a) S. Gessler, S.
Randl, S. Blechert, Tetrahedron Lett. 2000, 41 9973;
b) J. C. Conrad, G. P. A. Yap, D. E. Fogg, Organometal-
lics 2003, 22, 1986; c) M. Scholl, J. P. Trnka, J. P.
Morgan, R. H. Grubbs, Tetrahedron Lett. 1999, 40,
2247; d) T. Weskamp, F. J. Kohl, W. Hieringer, D.
Gleich, W. A. Herrmann, Angew. Chem. 1999, 111,
2573–2576; Angew. Chem. Int. Ed. 1999, 38, 2416–
2419; e) L. Jafarpour, A. C. Hillier, S. P. Nolan, Orga-
nometallics 2002, 21, 442; f) L. Jafarpour, E. D. Stevens,
S. P. Nolan, J. Organomet. Chem. 2000, 606, 49; g) A. J.
Adv. Synth. Catal. 2009, 351, 1826 – 1832
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1831