activation of electron-rich arenes under Pd(II) catalysis was
accomplished at room temperature using water as the reaction
solvent.6 To our knowledge, no reports have appeared where
mild aqueous conditions were successfully employed for the
direct arylation of electron-deficient arenes.7 Given the broad
applicability of these types of polyarenes in material chem-
istry,8 their synthesis under mild conditions would be
valuable.
The phosphine ligand also exerted an important effect on
the reaction outcome. For example, RuPhos allowed an
improved yield of 91% over 16 h compared to S-Phos (Table
1, entry 5). Also, the reaction time could be decreased to
5 h using DavePhos (Table 1, entry 6), and ultimately the
coupling product 3 could be obtained in 90% isolated yield
in only 2 h with MePhos13 (Table 1, entry 7).
Drawing inspiration from recent advances in the develop-
ment of mild C-H functionalization conditions, we decided
to investigate new strategies for the direct arylation of
electron-deficient polyfluorinated arenes at lower tempera-
ture,9 employing water as a cosolvent in the reaction medium.
Herein, we describe the successful development of a biphasic
catalytic system10 that provides access to a variety of biaryls
at ambient temperature.
Table 1. Optimization of Reaction Conditions
Initial reaction development and optimization was per-
formed with 4-iodotoluene 1 and pentafluorobenzene 2. After
extensive screening of solvents, the best results were obtained
with the use of i-PrOAc, DMF or EtOAc. Under these
conditions, no yields higher than 68% could be obtained
without addition of water (Table 1, entries 1-3). Interest-
ingly, the yield could be significantly increased when using
a solvent mixture of water and EtOAc.10 We were pleased
to find that the use of a 2.5:1 mixture of EtOAc and water
could improve the reaction yield up to 83% (Table 1, entry
4). Taking advantage of biphasic chemistry, it was reasoned
that by performing the reaction under such conditions, a
complete solubilization of the inorganic components of the
reaction could be achieved. In particular, the base, which
has been shown to be crucial for the concerted metalation-
deprotonation transition state to occur,11 is only sparsely
soluble in organic solvents.12
time
(h)
GC
entry
solvent
i-PrOAc
DMF
EtOAc
EtOAc/H2O (2.5:1)
EtOAc/H2O (2.5:1)
EtOAc/H2O (2.5:1)
EtOAc/H2O (2.5:1)
EtOAc/H2O (2.5:1)
ligand
yield (%)a
1
2
3
4
5
S-Phos
S-Phos
S-Phos
S-Phos
RuPhos
DavePhos
MePhos
MePhos
16
16
16
16
16
5
47
59
68
83
91
92
92 (90)
0
6
7
2
16
8b
a Determined by GC analysis relative to tetradecane as an internal
standard (isolated yield in parentheses). b No Ag2CO3 added.
(6) Nishikata, T.; Abela, A. R.; Lipshutz, B. H. Angew. Chem., Int. Ed.
2010, 49, 781.
The silver carbonate additive was required for the coupling
reaction to proceed.14 Indeed, without the addition of
Ag2CO3, no conversion to product 3 was observed (Table
1, entry 8) and only the starting materials were recovered.
The role of silver(I) is attributed to a plausible abstraction
of the iodine ligand from the Pd(II) complex, thereby
generating an electrophilic cationic palladium intermediate.15
In the course of the optimization studies, we demonstrated
that, under these biphasic conditions, the ratio of the two
solvent components is crucial to ensure optimal conversion
(Figure 1). There is a narrow window around a 2.5:1 ratio
of EtOAc and water in which the highest yields are obtained,
and any deviation from this ratio results in lower conversions.
(7) For selected examples of direct arylation of electron-poor (het-
ero)arenes, see :(a) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-
Laperle, M.; Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.;
Lecavalier, M.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 3291. (b) Do,
H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
(c) Caron, L.; Campeau, L.-C.; Fagnou, K. Org. Lett. 2008, 10, 4533. (d)
Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2008, 130, 14296.
(8) (a) Weck, M.; Dunn, A. R.; Matsumoto, K.; Coates, G. W.;
Lobkovsky, E. B.; Grubbs, R. H. Angew. Chem., Int. Ed. 1999, 38, 2741.
(b) Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. AdV. Mater. 2003,
15, 1455. (c) Montes, V. A.; Li, G.; Pohl, R.; Shinar, J.; Anzenbacher, P.,
Jr. AdV. Mater. 2004, 16, 2001.
(9) C-H bond activation of polyfluoroarenes requires high temperatures
(80-140 °C); see: (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou,
K. J. Am. Chem. Soc. 2006, 128, 8754. (b) Lafrance, M.; Shore, D.; Fagnou,
K. Org. Lett. 2006, 8, 5097. (c) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc.
2008, 130, 1128. (d) Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama,
T. J. Am. Chem. Soc. 2008, 130, 16170. (e) Wei, Y.; Kan, J.; Wang, M.;
Su, W.; Hong, M. Org. Lett. 2009, 11, 3346. (f) Johnson, S. A.; Huff, C. W.;
Mustafa, F.; Saliba, M. J. Am. Chem. Soc. 2008, 130, 17278. (g) Xie, K.;
Yang, Z.; Zhou, X.; Li, X.; Wang, S.; Tan, Z.; An, X.; Guo, C.-C. Org.
Lett. 2010, 12, 1564.
(13) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am.
Chem. Soc. 1999, 121, 9550.
(14) For examples of silver(I) used in direct arylation, see: (a) Lebrasseur,
N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. (b) Campeau, L.-C.;
Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. (c)
Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.
(15) For examples of cationic Pd(II) complexes generated by Ag(I)
abstraction of the iodide ligand, see: (a) Grove, D. M.; van Koten, G.;
Louwen, J. N.; Noltes, J. G.; Spec, A. L. J. Am. Chem. Soc. 1982, 104,
6609. (b) Denmark, S. E.; Schnute, M. E. J. Org. Chem. 1995, 60, 1013.
(c) Hirabayashi, K.; Mori, A.; Kawashima, J.; Suguro, M.; Nishihara, Y.;
Hiyama, T. J. Org. Chem. 2000, 65, 5342. (d) Overman, L. E.; Poon, D. J.
Angew. Chem., Int. Ed. 1997, 36, 518.
(10) For selected examples of transition metal catalyzed reactions under
biphasic solvent conditions, see :(a) Kurahashi, T.; Shinokubo, H.; Osuka,
A. Angew. Chem., Int. Ed. 2006, 45, 6336. (b) Bottarelli, P.; Costa, M. J.
Mol. Catal. A: Chem. 2008, 289, 82. (c) Lautens, M.; Mancuso, J.; Grover,
H. Synthesis 2004, 2006. (d) Datta, A.; Plenio, H. Chem. Commun. 2003,
13, 1504.
(11) For an analysis of the CMD mechanism, see: Gorelsky, S. I.;
Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.
(12) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.
Org. Lett., Vol. 12, No. 9, 2010
2117