Z. Wu, L. Zhou, Z. Jiang, D. Wu, Z. Li, X. Zhou
SHORT COMMUNICATION
343–345; Angew. Chem. Int. Ed. 2009, 48, 337–339; c) B.
de Lange, M. H. Lambers-Verstappen, L. Schmieder-
van de Vondervoort, N. Sereinig, R. de Rijk, A. M. de Vries,
J. G. de Vries, Synlett 2006, 3105–3109.
a) A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem. Soc.
2002, 124, 7421–7428; b) J. C. Antilla, A. Klapars, S. L. Buch-
wald, J. Am. Chem. Soc. 2002, 124, 11684–11688; c) S. L. Buch-
wald, A. Klapars, J. C. Antilla, G. E. Job, M. Wolter, F. Y.
Kwong, G. Nordmann, E. J. Hennessy, WO 02/085838 (priority
number US 2001 0286268), 2001.
a) H. B. Goodbrand, N. X. Hu, J. Org. Chem. 1999, 64, 670–
674; b) A. Kiyomori, J. F. Marcoux, S. L. Buchwald, Tetrahe-
dron Lett. 1999, 40, 2657–2660; c) R. K. Gujadhur, C. G. Bates,
D. Venkataraman, Org. Lett. 2001, 3, 4315–4317.
N. M. Patil, A. A. Kelkar, R. V. Chaudhari, J. Mol. Catal. A
2004, 223, 45–50.
“green” water as solvent; (2) convenient operation, per-
formed without addition PTC and under an inert gas; (3) a
variety of aryl iodides and bromides, even some electron-
deficient chlorides were found to be applicable with excel-
lent functional-group compatibility; (4) a series of aliphatic
N-nucleophiles, including simple aliphatic amines, amino
alcohols and amino acids provided high selectivity with
good to excellent yields. Furthermore, 1,2-disubstituted
benzimidazoles could be prepared conveniently by a cas-
cade amination/condensation process in this water system.
We believe this report will provide an attractive approach
for the preparing of N-arylated aliphatic amines. Further
application of the catalyst for other types of coupling reac-
tions is currently under investigation in this laboratory.
[4]
[5]
[6]
[7]
[8]
D. Ma, Y. Zhang, J. Yao, S. Wu, F. Tao, J. Am. Chem. Soc.
1998, 120, 12459–12467.
F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4,
581–584.
Experimental Section
[9]
[10]
F. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793–796.
General Procedure for the N-Arylation of Simple Aliphatic Amines
in Water: Catalyst (0.05 mmol), aryl halide (0.5 mmol), NaOH
(1 mmol), amine (2 mmol) and water (2 mL) were added to a sealed
tube. The reaction mixture was stirred at 120 °C for 15 h (20 h for
the synthesis of 1,2-disubstituted benzimidazoles), cooled to room
temperature, and then extracted with ethyl acetate. The organic
layer was dried with anhydrous Na2SO4, and the solvent was then
removed under reduced pressure. The N-arylated product was fi-
nally obtained by column chromatography on silica gel.
For selected references, see: a) M. Yang, F. Liu, J. Org. Chem.
2007, 72, 8969–8971; b) R. Gujadhur, D. Venkataraman, J. T.
Kintigh, Tetrahedron Lett. 2001, 42, 4791–4793; c) L. Zhu, L.
Cheng, Y. Zhang, R. Xie, J. You, J. Org. Chem. 2007, 72, 2737–
2743; d) H. Ma, X. Jiang, J. Org. Chem. 2007, 72, 8943–8946;
e) H. Kaddouri, V. Vicente, A. Ouali, F. Ouazzani, M. Taillefer,
Angew. Chem. 2009, 121, 339–342; Angew. Chem. Int. Ed. 2009,
48, 333–336.
a) E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am.
Chem. Soc. 2005, 127, 4120–4121; b) L. M. Huffman, S. S.
Stahl, J. Am. Chem. Soc. 2008, 130, 9196–9197; c) E. R. Stri-
eter, B. Bhayana, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131,
78–88; d) G. O. Jones, P. Liu, K. N. Houk, S. L. Buchwald, J.
Am. Chem. Soc. 2010, 132, 6205–6213; e) J. W. Tye, Z. Weng,
A. M. Johns, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc.
2008, 130, 9971–9983; f) J. W. Tye, Z. Weng, R. Giri, J. F. Hart-
wig, Angew. Chem. 2010, 122, 2231–2235; Angew. Chem. Int.
Ed. 2010, 49, 2185–2189.
a) R. A. Sheldon, Green Chem. 2005, 7, 267–278; b) C. J. Li,
B. M. Trost, Proc. Natl. Acad. Sci. USA 2008, 105, 13197–
13202; c) P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39,
301–312.
a) C. J. Li, T. H. Chan, Comprehensive Organic Reactions in
Aqueous Media, ed. John Wiley & Sons, Inc., Hoboken, New
Jersey, 2nd ed., 2007; b) C. J. Li, Chem. Rev. 2005, 105, 3095–
3166.
[11]
General Procedure for the N-Arylation of Amino Acids in Water:
Catalyst (0.05 mmol), aryl halide (0.5 mmol), NaOH (2 mmol),
amino acid (1 mmol) and water (2 mL) were added to a sealed tube.
The reaction mixture was stirred at 120 °C for 20 h and then cooled
to room temperature. 2 HCl was added to adjust the pH to 3,
and then extracted with ethyl acetate. The organic layer was dried
with anhydrous Na2SO4, and the solvent was then removed under
reduced pressure. Column chromatography on silica gel afforded
the desired N-arylated product.
[12]
[13]
[14]
Supporting Information (see footnote on the first page of this arti-
cle): Complete experimental procedures, NMR spectra of coupling
products.
Acknowledgments
C. M. Gordon, W. Leitner, Catalyst Separation Recovery and
Recycling, Springer, Netherlands, 2006.
T. Welton, Chem. Rev. 1999, 99, 2071–2083.
This project was financially sponsored and supported by the
National Natural Science Foundation of China (Nos. 20672075,
20771076, 20901052), the Sichuan Provincial Foundation
(08ZQ026-041) and the Ministry of Education (NCET-10-0581).
We also thank the Analysis and Testing Center of Sichuan Univer-
sity for NMR measurements.
[15]
[16]
For selected reviews and examples of aqueous catalysis, see: a)
K. H. Shaughnessy, Eur. J. Org. Chem. 2006, 1827–1835; b)
K. H. Shaughnessy, Chem. Rev. 2009, 109, 643–710; c) Y. Teo,
Adv. Synth. Catal. 2009, 351, 720–724; d) W. Y. Wu, J. C.
Wang, F. Y. Tsai, Green Chem. 2009, 11, 326–329; e) D. Yang,
H. Fu, Chem. Eur. J. 2010, 16, 2366–2370.
Key references on C–N coupling catalyzed by Cu in water, see:
a) L. D. S. Yadav, B. S. Yadav, V. K. Rai, Synthesis 2006, 1868–
1872; b) X. Zhu, Y. Ma, L. Su, H. Song, G. Chen, D. Liang,
Y. Wa n , Synthesis 2006, 3955–3962; c) X. Zhu, L. Su, L. Hu-
ang, G. Chen, J. Wang, H. Song, Y. Wan, Eur. J. Org. Chem.
2009, 635–642; d) X. Li, D. Yang, Y. Jiang, H. Fu, Green Chem.
2010, 12, 1097–1105.
[1] a) J. Lindley, Tetrahedron 1984, 40, 1433–1456; b) T. Wiglenda,
R. Gust, J. Med. Chem. 2007, 50, 1475–1484; c) G. Evano, N.
Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131.
[2] Reviews of copper-catalyzed C–N coupling reactions: a) S. V.
Ley, A. W. Thomas, Angew. Chem. 2003, 115, 5558–5607; An-
gew. Chem. Int. Ed. 2003, 42, 5400–5449; b) D. Ma, Q. Cai,
Acc. Chem. Res. 2008, 41, 1450–1460; c) F. Monnier, M.
Taillefer, Angew. Chem. 2008, 120, 3140–3143; Angew. Chem.
Int. Ed. 2008, 47, 3096–3099; d) F. Monnier, M. Taillefer, An-
gew. Chem. 2009, 121, 7088–7105; Angew. Chem. Int. Ed. 2009,
48, 6954–6971.
[17]
[18]
a) H. J. Cristau, P. P. Cellier, J. F. Spindler, M. Taillefer, Chem.
Eur. J. 2004, 10, 5607–5622; b) H. J. Cristau, P. P. Cellier, J. F.
Spindler, M. Taillefer, Eur. J. Org. Chem. 2004, 695–709; c) M.
Taillefer, H. J. Cristau, P. P. Cellier, J. F. Spindler, Fr 2833947-
WO 03/53225 (Pr. Nb. Fr 2001 16547), 2001.
[3] a) A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128,
8742–8743; b) N. Xia, M. Taillefer, Angew. Chem. 2009, 121,
4974
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 4971–4975