E. Khan et al. · Syntheses of 1,1-Organo-substituted Silole Derivatives
1001
Reaction of di(alkyn-1-yl)dimethylsilane 1c with 9-ethyl-9- and the bicyclic boron-oxygen compound 13 (1H, ◦11B, 13C
borabicyclo[3.3.1]nonane, Et-9-BBN
and 29Si NMR). The mixture was heated to 100 C under
vacuum (ca. 10−2 Torr) for 1 h, adopting the literature proce-
dure [24] for separation of the boron-oxygen product 13. The
boron-oxygen compound was collected as a solid along the
walls of the Schlenk tube. The oily residue contained mainly
the desired protodeborylated silole 12a (> 95 %; Fig. 1). The
identical experimental procedure was adopted for protodebo-
rylation of 12c. The silole derivatives 12a and 12c are color-
less oily liquids, stable in dry air, and they were fully charac-
terized by multinuclear NMR spectroscopy (Table 3).
A few crystals (0.20 g; 0.77 mmol) of the silane 1c dis-
solved in C6D6 (ca. 0.5 mL) and Et-9-BBN (0.5 mL, in ex-
cess) were given into an NMR tube which was sealed un-
◦
der argon. The reaction mixture was heated to 102 5 C
(oil bath temperature), and changes were monitored by 29Si
NMR spectroscopy (Fig. 3). After 7 d the NMR tube was
cooled in liquid N2 and opened carefully. The contents of
the tube were dissolved in pentane (5 mL). After removing
all volatiles including the excess of Et-9-BBN (b. p. = 40 –
42 ◦C/ 0.9 Torr) in vacuo, the pure silole (> 97 % according
to 1H NMR) 11c was obtained as a waxy solid.
12a: 1H NMR (400 MHz): δ = 0.5 (s, 3H, 2J(29Si,1H) =
6.5 Hz, Si-Me), 1.1, 2.2 (t, q, 5H, Et), 0.7, 0.8, 1.1, 1.3, 2.3
3
(t, t, m, m, t, 18H, Bu), 6.5 (s, 1H, J(29Si,1H) = 13.4 Hz,
11c: 1H NMR (400 MHz): δ = 0.2 (s, 6H, SiMe2), 0.8,
1.1, 1.5, 1.7 – 1.8, 2.0, 2.1, 3.2 (t, b, m, m, m, m, m, 19H,
B-Et, BC8H14), 6.8 – 7.1, 7.2, 7.3 (m, m, m, 10H, Ph).
C4H), 7.5, 7.1 (m, m, 5H, Si-Ph).
12c: 1H NMR (400 MHz): δ = 0.6 (s, 3H, 2J(29Si,1H) =
6.6 Hz, Si-Me), 1.0, 2.4 (t, q, 5H, Et), 6.9 – 7.1, 7.4, 7.6,
7.9 (m, m, m, m, 15H, Si-Ph, Ph), 7.3 (s, 1H, 3J(29Si,1H) =
13.1 Hz, C4H).
Protodeborylation of siloles 6a and 6c (typical procedure)
The silole 6a (1.0 g) was dissolved in pentane (10 mL),
and glacial acetic acid (1.0 mL, in excess) was slowly added.
The reaction mixture was stirred at r. t. After 40 min all read-
ily volatile materials were removed under reduced pressure.
The oily residue was identified as a mixture of the silole 12a
Acknowledgements
This work was supported by the Deutsche Forschungsge-
meinschaft. E. K. is grateful to DAAD and HEC (Pakistan)
for a scholarship.
[1] a) T. Hiyama, A. Mori, Science of Synthesis 2002,
4, 647; b) G. Deleris, J. Dunogues, R. Calas,
P. Lapouyade, J. Organomet. Chem. 1974, 80, C45;
c) C. Ackerhans, H. W. Roesky, D. Vidovic, J. Mag-
ull, Eur. J. Inorg. Chem. 2003, 66; d) H. Sugita,
Y. Hatanaka, T. Hiyama, Chem. Lett. 1996, 379;
e) D. Mesnard, L. Miginiac, J. Organomet. Chem.
1991, 420, 163; f) C. Mechtler, M. Zirngast, J. Baum-
gartner, C. Marschner, Eur. J. Inorg. Chem. 2004, 3254;
g) H. Jiang, S. Zhu, Tetrahedron Lett. 2005, 46, 517;
h) C. Ru¨dinger, H. Beruda, H. Schmidbaur, Z. Natur-
forsch. 1994, 49b, 1348.
[2] a) K. Uchida, K. Utimoto, H. Nozaki, Tetrahedron
1977, 33, 2987; b) J. A. Soderquist, B. Santiago,
Tetrahedron Lett. 1990, 31, 5113; c) R. Yamaguchi,
H. Kawasaki, T. Yoshitome, M. Kawanisi, Chem. Lett.
1982, 1485; d) G. A. Molander, J. Org. Chem. 1983, 48,
5409; e) H. Lang, K. Ko¨hler, M. Bu¨chner, Chem. Ber.
1995, 128, 525; f) H. Lang, M. Weinmann, L. Zsol-
nai, J. Organomet. Chem. 1996, 522, 277; g) H. Lang,
U. Lay, M. Weinmann, J. Organomet. Chem. 1992,
436, 265.
R. Hara, W.-H. Sun, Y. Obora, N. Suzuki, K. Naka-
jima, J. Am. Chem. Soc. 1997, 119, 12842; e) J. Liu,
S. Zhang, W.-X. Zhang, Z. Xi, Organometallics 2009,
28, 413; f) M. Zirngast, C. Marschner, J. Baumgartner,
Organometallics 2006, 25, 4897.
[4] M. Zaidlewicz, M. Krzeminski, Science of Synthesis
2004, 6, 1097.
[5] a) A. Pelter, K. Smith, H. C. Brown, Borane Reagents,
Academic Press, London, 1988; b) K. Hirano,
H. Yorimitsu, K. Oshima, Chem. Commun. 2008, 3234;
c) T. C. M. Chung, Polymer News 2003, 28, 238.
[6] H. C. Brown, Organic Syntheses via Boranes, Wiley-
Interscience, New York, 1975.
[7] B. Wrackmeyer, O. L. Tok, Comprehensive Hetero-
cyclic Chemistry III, (Eds.: A. R. Katritzky, C. A.
Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier,
Oxford, 2008, Chapter 3.17, pp. 1181; and refs. therein.
[8] M. Saito, M. Yoshioka, Coord. Chem. Rev. 2005, 249,
765.
[9] a) J. Dubac, A. Laporterie, G. Manuel, Chem.
Rev. 1990, 90, 215; b) E. Colomer, R. J. P. Corriu,
M. Lheureux, Chem. Rev. 1990, 90, 265; c) D. A.
Armitage, in Comprehensive Heterocyclic Chemistry
II, Vol. 2 (Ed.: C. W. Bird), Elsevier, Oxford, 1996,
pp. 903; d) J. Dubac, C. Guerin, O. Meunier, in Chem-
istry of Organic Silicon Compounds, Vol. 2, (Eds.:
Z. Rappoport, Y. Apeloig), Wiley, Chichester 1998,
[3] a) T. Takahashi, Z. Xi, Y. Obora, N. Suzuki, J. Am.
Chem. Soc. 1995, 117, 2665; b) H. Ito, K. Arimoto,
H. Sensui, A. Hosomi, Tetrahedron Lett. 1997, 38,
3977; c) T. Yu, X. Sun, C. Wang, L. Deng, Z. Xi,
Chem. Eur. J. 2005, 11, 1895; d) Z. Xi, R. Fischer,
Unauthenticated
Download Date | 12/25/18 6:45 PM