G. Bartoli et al. / Tetrahedron Letters 49 (2008) 2555–2557
2557
10. Shanthan Rao, P.; Venkataratnam, R. V. Tetrahedron Lett. 1991, 32,
5821–5822.
11. Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.;
Massaccesi, M.; Paletti, M. Tetrahedron Lett. 2006, 47, 6501–6504.
12. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007,
269, 53–57.
13. (a) Bigi, F.; Conforti, M. L.; Maggi, R.; Piccino, A.; Sartori, G. Green
Chem. 2000, 2, 101–103; (b) Hangarge, R. V.; Sonwane, S. A.;
Jarikote, D. V.; Shingare, M. S. Green Chem. 2001, 3, 310–312; (c)
Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J. Tetrahedron 2003, 59,
3753–3760.
aldehydes to give a mixture of Z- and E-isomeric alkenes,
(Table 2, entries 14 and 15).
We tried to extend the procedure to a,b-unsaturated
aldehydes, but unfortunately not very satisfactory results
were obtained, (Table 2, entries 16). In fact in the reaction
of 4a with cinnamaldehyde the desired product 6ak was
obtained in 30% yields, together with a mixture of starting
materials and unidentified by-products.
In some cases, when the aldehyde is solid and does not
dissolve in the diketone, the addition of a minimum
amount of solvent is necessary to solubilize the reagents.
THF proved to be the best choice, and the reactions were
carried out under concentrated conditions (3.5 M).
In conclusion, we have demonstrated another interesting
application of Mg(ClO4)2 to act as a Lewis acid in promot-
ing the synthesis of trisubstituted functionalized alkenes via
a Knoevenagel condensation between poorly reactive
b-diketones and aliphatic and aromatic aldehydes. The
protocol works also with more reactive systems like b-keto-
esters. The reaction conditions are very mild, in fact the
condensation works at room temperature, in the absence
or with a minimum amount of solvent. Notably, this pro-
cedure led only to the Knoevenagel products, any side-
product derived from a subsequent Michael addition of
the b-diketone was never detected. In addition, the reaction
with aliphatic aldehydes gave generally only the desired
product, in contrast to other reported examples.
14. Yadav, J. S.; Subba Reddy, B. V.; Basak, A. K.; Visali, B.; Narsaiah,
A. V.; Nagaiah, K. Eur. J. Org. Chem. 2004, 546–551.
15. Su, C.; Chen, Z.-C.; Zheng, Q.-G. Synthesis 2003, 555–559.
16. (a) Bartoli, G.; Babiuch, K.; Bosco, M.; Carlone, A.; Galzerano, P.;
Melchiorre, P.; Sambri, L. Synlett 2007, 2897–2901. and references
herein cited.; (b) Bartoli, G.; Bosco, M.; Carlone, A.; Dalpozzo, R.;
Locatelli, M.; Melchiorre, P.; Sambri, L. J. Org. Chem. 2006, 71,
9580–9588.
17. (a) Chakraborti, A. K.; Sharma, L.; Gulhane, R.; Shivani Tetrahedron
2003, 59, 7661–7668; (b) Bartoli, G.; Bosco, M.; Locatelli, M.;
Marcantoni, E.; Melchiorre, P.; Sambri, L. Synlett 2004, 239–242; (c)
Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi,
M.; Sambri, L. Eur. J. Org. Chem. 2003, 4611–4617; (d) Bartoli, G.;
Bosco, M.; Locatelli, M.; Marcantoni, E.; Melchiorre, P.; Sambri, L.
Org. Lett. 2005, 427–430.
18. Bartoli, G.; Locatelli, M.; Melchiorre, P.; Sambri, L. Eur. J. Org.
Chem. 2007, 2037–2049. and references herein cited.
19. (a) Shivani; Pujala, B.; Chakraborti, A. K. J. Org. Chem. 2007, 72,
3713–3722; (b) Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2007, 72,
1263–1270.
20. (a) Long, J. Chem. Health Safety 2002, 9, 12–18; (b) El-Awad, A. M.;
Gabr, R. M.; Girgis, M. M. Thermochim. Acta 1991, 184, 205–
212.
21. General procedure for the Knoevenagel condensation: In a two necked
flask equipped with a magnetic stirring bar, Mg(ClO4)2 (0.10 mmol),
MgSO4 (0.20 mmol), b-keto derivative 4 (1.0 mmol) and aldehyde 5
(1.2 mmol) were added. If the system was completely solid, THF
(0.29 ml) was added to dissolve the reagents. The mixture was stirred
at rt. CH2Cl2 was added to the crude reaction mixture. Filtration on
Celite and removal of the solvent by rotary evaporation gave the
Acknowledgments
This research was carried out within the framework of
the National Project ‘Stereoselezione in Sintesi Organica’
supported by MIUR, Rome, and FIRB National Project
‘Progettazione, preparazione e valutazione farmacologica
di nuove molecole organiche quali potenziali farmaci
innovativi’.
crude product. The substituted olefin
6 was purified by flash
chromatography on silica gel with the appropriate mixture of
hexane/Et2O.
Spectroscopic data for selected compounds follow: 3-Butylidenepen-
tane-2,4-dione (6af): H NMR (CDCl3, 400 MHz): d (ppm) = 0.90 (t,
1
References and notes
JHH = 7.4, 3H), 1.42–1.51 (m, 2H), 2.11–2.18 (m, 2H), 2.25 (s, 3H),
2.26 (s, 3H), 6.63 (t, J = 7.69 Hz, 1H). 13C NMR (CDCl3, 100 MHz):
d (ppm) = 13.7 (CH3), 21.8 (CH2), 25.9 (CH3), 31.4 (CH2), 31.6 (Me),
145.2 (CH), 146.6 (C), 197.1 (C), 203.5 (C). MS (ESI+): m/z = 177.
4-((5-Nitrofuran-2-yl)methylene)heptane-3,5-dione (6bi): 1H NMR
(CDCl3, 400 MHz): d (ppm) = 1.11 (t, JHH = 7.1, 3H), 1.22 (t,
JHH = 7.1, 3H), 2.67–2.75 (m, 4H), 6.82 (d, JHH = 3.8, 1H), 6.15 (s,
1H), 7.28 (d, JHH = 3.8, 1H). 13C NMR (CDCl3, 100 MHz): d
(ppm) = 7.1 (CH3), 7.7 (CH3), 32.0 (CH2), 37.1 (CH2), 112.7 (CH),
117.7 (CH), 121.5 (CH), 143.4 (C), 150.5 (C), 197.8 (C), 205.9 (C). MS
(ESI+): m/z = 274.
1. (a) Jones, G. Org. React. 1967, 15, 204–599; (b) Tietze, L. F.; Beifuss,
U. In Comprehensive Organic Synthesis; Pergamon: New York, 1991;
Vol. 2, pp 341–394.
2. Tietze, L. F. Chem. Rev. 1996, 96, 115–136.
3. Knoevenagel, E. Berichte 1898, 31, 2585–2595.
4. (a) Saravanamurugan, S.; Palanichamy, M.; Hartmann, M.; Muru-
gesan, V. Appl. Catal. A 2006, 298, 8–15; (b) Reddy, T. I.; Varma, R.
S. Tetrahedron Lett. 1997, 38, 1721–1724.
5. Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem. 1999, 64,
1033–1035.
4-(3-Phenylprop-2-ynylidene)heptane-3,5-dione (6bj): 1H NMR
(CDCl3, 400 MHz): d (ppm) = 1.12 (t, JHH = 7.2, 3H), 1.20 (t,
JHH = 7.2, 3H), 2.67 (q, JHH = 7.3, 2H), 2.88 (q, JHH = 7.3, 1H), 6.89
(s, 1H), 7.34–7.40 (3H, m), 7.43–7.46 (2H, m). 13C NMR
(CDCl3, 100 MHz): d (ppm) = 7.6 (CH3), 7.9 (CH3), 32.6 (CH2),
36.7 (CH2), 85.0 (C), 105.4 (C), 120.2 (CH), 121.6 (C), 128.6 (CH),
129.9 (CH), 132.0 (CH), 149.8 (C), 198.1(C), 204.8(C). MS (ESI+):
m/z = 263.
6. Lakshmi Kantam, M.; Ravindra, A.; Venkat Reddy, Ch.; Sreedhar,
B.; Choudary, B. M. Adv. Synth. Catal. 2006, 348, 569–578.
7. Lakshmi Kantam, M.; Choudary, B. M.; Venkat Reddy, Ch.;
Koteswara Rao, K.; Figueras, F. Chem. Commun. 1998, 1033–1034.
8. (a) Ranu, B. C.; Jana, R. Eur. J. Org. Chem. 2006, 3767–3770; (b)
Hangarge, R. V.; Jarikote, D. V.; Shingare, M. S. Green Chem. 2002,
4, 266–268; (c) Harjani, J. R.; Nara, S. J.; Salunkhe, M. M.
Tetrahedron Lett. 2002, 43, 1127–1130.
9. (a) Lehnert, W. Tetrahedron 1974, 30, 301–305; (b) Green, B.; Crane,
R. I.; Khaidem, I. S.; Leighton, R. S.; Newaz, S. S.; Smyser, T. E. J.
Org. Chem. 1985, 50, 640–644.
22. (a) Wilson, B. D. J. Org. Chem. 1963, 28, 314–320; (b) Hiramatsu, H.;
Harada, K.; Kojima, Y.; Fujiwara, K. Nippon Kagaku Kaishi 1989, 4,
714–721.