Organometallics 2010, 29, 1997–2000 1997
DOI: 10.1021/om900765m
Reactivity of the Nickel(0)-CO2-Imine System: New Pathway to
Vicinal Diamines
€
Alexandre Graet, Laura Sinault, Maxime B. Fusaro, Anne-Laure Vallet, Candace Seu,
James L. Kilgore, and Marc M. Baum*
Department of Chemistry, Oak Crest Institute of Science, 2275 E. Foothill Boulevard, Pasadena,
California 91107
Received September 2, 2009
Summary: Nickela-2-oxazolidinones, formed by oxidative
coupling of imines and CO2 with Ni0, react with LiCl under
mild conditions (4 °C, 1 atm) to afford vicinal diamines in up to
89% yield. The reaction is the first organometallic example of
reductive imine coupling requiring CO2. In this system, CO2 is
participatory and is not incorporated in the reaction products.
These results represent an important addition to our under-
standing of the reactivity of metallacycles derived from CO2
and unsaturated compounds.
compounds,12 including alkenes,13-16 dienes,17-19 al-
kynes,20-24 aldehydes (Y = O),25-27 and imines (Y =
NR3).28 Recent efforts primarily have been dedicated to further
developing the chemistry of oxanickelacyclopentenes, formed
by the oxidative coupling of Ni0 with CO2 and alkynes (1b). For
example, Mori et al. reported the regio- and stereoselective
synthesis of tri- and tetrasubstituted carboxylated alkenes,4
while Louie and co-workers used CO2, diynes, and a catalytic
amount of nickel complex in an efficient, intramolecular [2 þ
2 þ 2] cycloaddition system.2,29,30
Carbon dioxide (CO2) is a highly appealing C1 building
block for industrial organic synthesis,1-5 since this potent
greenhouse gas is inexpensive, abundant, nontoxic, noncor-
rosive, nonexplosive, and nonflammable. The thermody-
namic stability and kinetic inertness of CO2, however,
present significant challenges to converting CO2 into useful
materials. Nickel(0) has a particular affinity for CO2, as
evidenced by the large number of characterized monomeric
and oligomeric Ni-CO2 complexes.6-11 The regioselective
co-oligomerization of CO2, Ni0, and unsaturated com-
pounds via an oxidative coupling reaction (Scheme 1) takes
advantage of this affinity to afford the five-membered
chelate ring 1. The reaction has been shown to proceed at
the electron-rich Ni0 center with a variety of unsaturated
Scheme 1. Nickel-Mediated, Regioselective Oxidative Coupling
of Double-Bonded Compounds (Y = CR3R4, O, NR3) and
Alkynes with CO2
Although nickela-2-oxazolidinones 2 are formed in high
yield (ca. 90%) from aliphatic and aromatic imines,28 further
investigations on their reactivity have not been reported.
Herein, we describe the first results of attempted Ni-C
insertion reactions in nickela-2-oxazolidinones and the un-
expected, high-yielding production of vicinal diamines by a
Ni-CO2-imine intermediate.
*To whom correspondence should be addressed. Tel: þ1-626-817-
0883. Fax: þ1-626-817-0884. E-mail: m.baum@oak-crest.org.
(1) Walther, D.; Ruben, M.; Rau, S. Coord. Chem. Rev. 1999, 182, 67.
(2) Louie, J. Curr. Org. Chem. 2005, 9, 605.
(3) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975.
(4) Mori, M. Eur. J. Org. Chem. 2007, 4981.
(5) Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
(6) Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero,
M. J. Chem. Soc., Chem. Commun. 1975, 636.
(7) Rawle, S. C.; Harding, C. J.; Moore, P.; Alcock, N. W. J. Chem.
Soc., Chem. Commun. 1992, 1701.
(8) Tanase, T.; Nitta, S.; Yoshikawa, S.; Kobayashi, K.; Sakurai, T.
Inorg. Chem. 1992, 31, 1058.
(20) Inoue, Y.; Itoh, Y.; Kazama, H.; Hashimoto, H. Bull. Chem.
Soc. Jpn. 1980, 53, 3329.
(21) Walther, D.; Schonberg, H.; Dinjus, E.; Sieler, J. J. Organomet.
(9) Pandey, K. K. Coord. Chem. Rev. 1995, 140, 37.
(10) Ito, M.; Takita, Y. Chem. Lett. 1996, 929.
(11) Leitner, W. Coord. Chem. Rev. 1996, 153, 257.
(12) Kubiac, C. P. In Comprehensive Organometallic Chemistry II;
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York,
1995; Vol. 9, p 1.
Chem. 1987, 334, 377.
(22) Tsuda, T.; Morikawa, S.; Sumiya, R.; Saegusa, T. J. Org. Chem.
1988, 53, 3140.
(23) Walther, D.; Braunlich, G.; Kempe, R.; Sieler, J. J. Organomet.
Chem. 1992, 436, 109.
(24) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto,
Y. J. Org. Chem. 1999, 64, 3975.
(25) Dinjus, E.; Kaiser, J.; Sieler, J.; Walther, D. Z. Anorg. Allg.
Chem. 1981, 483, 63.
(26) Kaiser, J.; Sieler, J.; Braun, U.; Golic, L.; Dinjus, E.; Walther, D.
J. Organomet. Chem. 1982, 224, 81.
(27) Geyer, C.; Dinjus, E.; Schindler, S. Organometallics 1998, 17, 98.
(28) Walther, D.; Dinjus, E.; Sieler, J.; Kaiser, J.; Lindqvist, O.;
Anderson, L. J. Organomet. Chem. 1982, 240, 289.
(29) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am.
Chem. Soc. 2002, 124, 15188.
(13) Hoberg, H.; Schaefer, D. J. Organomet. Chem. 1982, 236, C28.
(14) Hoberg, H.; Ballesteros, A.; Sigan, A.; Jegat, C.; Barhausen, D.;
Milchereit, A. J. Organomet. Chem. 1991, 407, C23.
(15) Hoberg, H.; Ballesteros, A.; Sigan, A.; Jegat, C.; Milchereit, A.
Synthesis 1991, 395.
€
(16) Braunlich, G.; Walther, D.; Eibisch, H.; Schonecker, B.
J. Organomet. Chem. 1993, 453, 295.
(17) Tsuda, T.; Chujo, Y.; Saegusa, T. Synth. Commun. 1979, 9, 427.
(18) Hoberg, H.; Schaefer, D. J. Organomet. Chem. 1983, 255, C15.
(19) Hoberg, H.; Peres, Y.; Milchereit, A.; Gross, S. J. Organomet.
Chem. 1988, 345, C17.
(30) Tekavec, T. N.; Arif, A. M.; Louie, J. Tetrahedron 2004, 60, 7431.
r
2010 American Chemical Society
Published on Web 04/15/2010
pubs.acs.org/Organometallics