186
W. H. Midura, M. Cypryk / Tetrahedron: Asymmetry 21 (2010) 177–186
Oxford, 1991; pp 148–170. Chapter 3; (c) Khiar, N.; Fernandez, I.; Alcudia, A.;
Alcudia, F.. In Advances in Sulfur Chemistry; Rayner, C. M., Ed.; JAI: Stanford, CT,
2000; Vol. 2, p 57. Chapter 3; (d) Rayner, C. M. Contemp. Org. Synth. 1994, 1,
191–203; (e) Procter, D. J. Chem. Soc., Perkin Trans. 1 2001, 335–354.
3. Solladie, G.; Carreno, M. C. In Organosulfur Chemistry. Synthetic Aspects; Page, P.
C. B., Ed.; Academic: New York, NY, 1995; pp 1–47. Chapter 1.
124.5; 130.1; 137.9; 142.2. Anal. Calcd for C13H18O2S: C, 65.51; H,
7.61. Found: C, 65.61; H, 7.76
5.10. 3-Pentyl-2-(p-tolylsulfinyl)-oxirane—method B
_
4. Some recent papers: (a) Gulea, M.; Kwiatkowska, M.; Łyzwa, P.; Legay, R.;
5.10.1. (2S,3S,SS)-3-Pentyl-2-(p-tolylsulfinyl)-oxirane trans-4h
Gaumont, A.-C.; Kiełbasin´ ski, P. Tetrahedron: Asymmetry 2009, 20, 293–297; (b)
Mikolajczyk, M.; Midura, W. H.; Ewas, A. M.; Perlikowska, W.; Mikina, M.;
Jankowiak, A. Phosphorus, Sulfur Silicon 2008, 183, 313–325; (c) Brebion, F.;
Goddard, J. P.; Fensterbank, L.; Malacria, M. Synthesis 2005, 2449–2452.
5. (a)Asymmetric Synthesis; Solladie, G., Morrison, J. D., Eds.; Academic: New York,
NY, 1983; Vol. 2, pp 157–199; (b) Cinquini, M.; Cozzi, F.; Montanari, F. In
Organic Sulfur Chemistry, Theoretical and Experimental Advances; Bernardi, F.,
Csizmadia, G., Mangini, A., Eds.; Elsevier: Amsterdam, 1985; (c) Hua, D. H.. In
Advances in Carbanion Chemistry; Snieckus, V., Ed.; JAI: London, 1992; Vol. 1, pp
249–281; (d) Hua, D. H. Adv. Heterocycl. Nat. Prod. Synth. 1996, 3, 151–177.
6. Finn, M. G.; Sharpless, K. B.. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: Orlando, FL, 1985; Vol. 5, p 247.
7. (a) Katsuki, T. In Comprehensive Asymmetric Catalysis II; Jacobsen, E. N., Pfaltz,
A., Yammoto, H., Eds.; Springer: Berlin, 1999; pp 621–648; (b) Jacobsen, E. N.;
Wu, M. H. In Comprehensive Asymmetric Catalysis II; Jacobsen, E. N., Pfaltz, A.,
Yammoto, H., Eds.; Springer: Berlin, 1999; pp 649–677; (c) Wang, Z.-X.; Tu, Y.;
Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11225; (d) Enders, D.;
Zhu, J.; Raabe, G. Angew. Chem., Int. Ed. 1996, 35, 1725.
½
a 2D2
ꢄ
¼ þ84:5 (c 1.1, acetone); 1H NMR (200 MHz) d: 0.85 (3H, t,
J = 6.8 Hz, CH3CH2); 1.21–1.39 (6H, m); 1.55–1.65 (2H, m) 2.42 (3H,
s, CH3C6H4S); 3.59 (1H, dt, J = 1.7, 5.7 Hz, CHCH2); 3.67 (1H, d,
J = 1.7 Hz, CHS); 7.35 and 7.56 (4H, AB system J = 8.2 Hz, Ar); 13C
NMR (50 MHz) d: 13.9, 21.5; 22.4, 25.3, 30.5, 31.2; 56.8; 72.8;
124.4; 130.0; 137.7; 142.3. Anal. Calcd for C14H20O2S: C, 66.63;
H, 7.99. Found: C, 66.61; H, 7.76.
1H NMR (200 MHz) d: 0.86 (3H, t, J = 6.8 Hz, CH3CH2); 1.22–1.43
(6H, m); 1.58–1.70 (2H, m) 2.42 (3H, s, CH3C6H4S); 3.37 (1H, dt,
J = 3.4, 5.7 Hz, CHCH2); 3.82 (1H, d, J = 3.4 Hz, CHS); 7.35 and 7.60
(4H, AB system J = 8.2 Hz, Ar).
5.11. 3-Nonyl-2-(p-tolylsulfinyl)-oxirane—method A and B
8. (a) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Asymmetric Ylide Reactions:
Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement
Chem. Rev. 1997, 97, 2341–2372; (b) Aggarwal, V. K.. In Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
Berlin, 1999; Vol. 2, pp 679–693.
9. (a) Satoh, T.; Taguchi, D.; Kurabayashi, A.; Kanoto, M. Tetrahedron 2002, 58,
4217; (b) Satoh, T.; Kaneko, Y.; Yamakawa, K. Tetrahedron Lett. 1986, 27, 2379.
10. (a) Furukawa, N.; Sugihara, Y.; Fujihara, H. J. Org. Chem. 1989, 54, 4222–4224;
(b) Julienne, K.; Metzner, P.; Henyron, V. J. Chem. Soc., Perkin Trans. 1 1999, 731–
735; (c) Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. J. Org.
Chem. 2001, 66, 5620–5623; (d) Winn, C. L.; Bellanie, B.; Goodman, J. M.
Tetrahedron Lett. 2002, 43, 5427–5430; (e) Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Li, Y.-
Z.; Huang, F.-W. J. Org. Chem. 1996, 61, 489–493; (f) Hayakawa, R.; Shimizu, M.
Synlett 1999, 1328–1330; (g) Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S.
Tetrahedron Lett. 2001, 42, 57–59.
5.11.1. (2S,3S,SS)-3-Nonyl-2-(p-tolylsulfinyl)-oxirane trans-4i
½
a 2D2
ꢄ
¼ þ66:4 (c 0.5, acetone); 1H NMR (200 MHz) d: 0.87 (3H, t,
J = 6.8 Hz, CH3CH2); 1.25–1.41 (14H, m); 1.58–1.65 (2H, m) 2.40
(3H, s, CH3C6H4S); 3.59(1H, dt, J = 1.8, 5.7 Hz, CHCH2); 3.68 (1H,
d, J = 1.8 Hz, CHS); 7.33 and 7.53 (4H, AB system J = 8.4 Hz, Ar);
13C NMR (50 MHz) d: 13.9, 21.5; 22.2, 22.4, 25.3, 27.8, 30.2, 30.5,
31.2; 31.4, 56.8; 72.8; 124.4; 130.0; 137.7; 142.3. Anal. Calcd for
C18H28O2S: C, 70.08; H, 9.15. Found: C, 70.21; H, 9.16.
5.12. Theoretical methods
11. (a) Midura, W. H.; Krysiak, J.; Wieczorek, M. W.; Filipczak, A. D. Pol. J. Chem.
2007, 81, 211–223; (b) Mikołajczyk, M.; Midura, W. H.; Michedkina, E.;
Filipczak, A.; Wieczorek, M. W. Helv. Chim. Acta 2005, 88, 1769–1775; (c)
Midura, W. H.; Krysiak, J. A.; Cypryk, M.; Mikołajczyk, M.; Wieczorek, M. W.;
Filipczak, A. D. Eur. J. Org. Chem. 2005, 653–662; (d) Garcia Ruano, J. L.; Fajardo,
C.; Martin, M. R.; Midura, W. H.; Mikołajczyk, M. Tetrahedron: Asymmetry 2004,
15, 2475–2482.
All calculations were performed using the density functional
theory methods with the GAUSSIAN 03 program.20 Equilibrium geom-
etries in the gas phase were optimized with the B3LYP/6-31G(d)
method. All potential energy minima and transition states were
identified by the frequency analysis. Transition states were further
verified by the IRC calculations. Final electronic energies for the
stationary points were calculated at the B3LYP/6-311+G(2d,p) level
for the B3LYP/6-31G(d) geometries (this level of theory is denoted
as 1B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d)). Thermal corrections
to the enthalpy and entropy at 298.15 K were scaled by 0.98.
Geometries and energies in acetonitrile solution were calculated
using a continuum solvation model and the SCRF–PCM method21
as implemented in GAUSSIAN 03 at the B3LYP/6-31+G(d) level of
theory. Final electronic energies for the stationary points were cal-
culated at the B3LYP/6-311+G(2d,p) level (SCRF-B3LYP/6-
311+G(2d,p)//B3LYP/6-31+G(d)). UAHF atomic radii have been
used for cavity definition.
12. Midura, W. H. Synlett 2006, 733–736.
13. Numata, T.; Oae, S. Bull. Chem. Soc. Jpn. 1972, 45, 2794–2796.
14. Colombo, L.; Gennari, C.; Narisano, E. Tetrahedron Lett. 1978, 40, 3861–3862.
15. Addition of (S)-dimethylsulfonium-(p-tolylsulfinyl)methylide to N-tosyl
imines afforded the corresponding sulfinyl aziridines with full enantio- and
diastereoselectivity: Midura, W. H. Tetrahedron Lett. 2007, 48, 3907–3910.
16. (a) Garcia Ruano, J. L.; Martin Castro, A. M.; Roddguez, J. H. J. Org. Chem. 1992,
57, 7235–7241; (b) Posner, G. H. Acc. Chem. Res. 1987, 20, 72–78; (c) Solladie,
G.; Greck, C.; Demailly, G.; Solladie-Cavallo, A. Tetrahedron Lett. 1982, 23, 5047–
5051.
17. (a) Eades, R. A.; Gassman, P. G.; Dixon, D. A. J. Am. Chem. Soc. 1981, 103, 1066–
1068; (b) Aggarwal, V. K.; Schade, S.; Taylor, B. J. Chem. Soc., Perkin Trans. 1
1997, 2811–2813.
18. Non-planar configuration at the anionic
a-carbon atom was suggested
previously based on NMR studies and ab initio calculations of
a-
sulfinylcarbanion. [Chassaing, G.; Marquett, A.; Tetrahedron, 1978, 34, 1399;
Wolfe, S.; Rauk, A.; Csizmadia, I. G. J. Am. Chem. Soc. 1967, 89. 5710].
19. (a) Aggarwal, V. K.; Harvey, J. N.; Richardson, J. J. Am. Chem. Soc. 2002, 124,
5747–5756; (b) Aggarwal, V. K.; Richardson, J. Chem. Commun. 2003, 2644–
2651.
References
1. (a) Carreno, M. C.; Hernandez-Torres, G.; Ribagorda, M. Chem. Commun. 2009,
20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision D.01, Gaussian, Inc.: Wallingford, CT, 2004.
6129–6144; (b) Urbano, A.; Garcıa Ruano, J. L.; Aleman, J.; Cid, M. B.;
Fernandez-Ibanez, M. A.; Maestro, M. C.; Martın, M. R.; Martın-Castro, A. M.
´
In Organosulfur Chemistry in Asymmetric Synthesis; Toru, T., Bolm, C., Eds.;
Wiley-VCH: Weinheim, 2008; pp 55–159; (c) Fernandez, I.; Khiar, N. In
Organosulfur Chemistry in Asymmetric Synthesis; Toru, T., Bolm, C., Eds.; Wiley-
VCH: Weinheim, 2008; pp 265–290; (d) Volonterio, A.; Zanda, M. In
Organosulfur Chemistry in Asymmetric Synthesis; Toru, T., Bolm, C., Eds.;
Wiley-VCH: Weinheim, 2008; pp 351–374; (e) Balcells, D.; Maseras, F. In
Organosulfur Chemistry in Asymmetric Synthesis; Toru, T., Bolm, C., Eds.; Wiley-
VCH: Weinheim, 2008; pp 399–416; (f) Ferber, B.; Kagan, H. Adv. Synth. Catal.
2007, 349, 493–507; (g) Nenadjenko, G.; Krasovskiy, A. L.; Balenkova, E. S.
Tetrahedron 2007, 63, 12481–12539; (h) Pellissier, H. Tetrahedron 2006, 62,
5559–5601; (i) Mikolajczyk, M.; Drabowicz, J.; Kielbasinski, P. Chiral Sulfur
Reagents; CRC: Boca Raton, New York, NY, 1997.
2. (a) Walker, A. J. Tetrahedron: Asymmetry 1992, 3, 961–998; (b) Solladie, G.. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
21. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.