2372
Y. Leng et al. / Tetrahedron Letters 51 (2010) 2370–2373
Table 3 (continued)
Entry
Ar
T (°C)
t (h)
6
Mp (°C)
Yieldb (%)
HO
OH
7
8
4-HO–C6H4
130
5
NAd
39e
6g
NO2
Me2N
MeO
NMe2
6h
4-(Me2N)–C6H4
130
130
4
3
182–183
132–134
84
82
NO2
OMe
9
4-Methoxynaphthyl
6i
NO2
a
1 (1 mmol), arene (6 mmol), and NaHSO4ÁSiO2 (200 mg, 0.5 mmol of NaHSO4 on SiO2) were used.
Isolated yield.
NR stands for no reaction.
NA (not available), the product is liquid.
39% of 6g and 44% of regioisomer 2-hydroxyphenyl-4-hydroxyphenyl-4-nitrophenylmethane.
b
c
d
e
benzaldehyde, piperonal, vanilline and isovanilline led to lower
turing Program’ (Nos. 2009ZX09103-065, 2009ZX09301-001), Ma-
jor Project of Chinese National Programs for Fundamental Research
and Development (No. 2009CB918404), and National Science
Foundation of China (Nos. 30721005, 90813034, 03772648).
reaction yields and required longer time as well (entries 6–9). In
some cases the reaction did not reach completion even after a pro-
longed reaction time. For example, the reaction of vanilline after
5 h provided the desired product 4h in 44% yield along with 31%
of unreacted aldehyde 1h (entry 8), and reaction of isovanilline
with thiophene afforded 4i in 39% yield along with 27% of unre-
acted aldehyde 1i (entry 9). Notably, triheteroarylmethanes could
also be prepared using this method as trithienylmethane 4j was
afforded in 71% yield (entry 10). Additionally, the reaction of p-
formaldehyde with thiophene afforded dithiophen-2-ylmethane
in 58% yield, but with lower efficacy in term of reaction time and
yield (entry 11).
Supplementary data
Supplementary data (detailed experimental procedures and the
analytical data of all final products) associated with this article can
References and notes
We finally examined the scope of the arenes (Table 3).20 The re-
sults indicated that electronic effect played a major role in the
arene substrates. The reaction of an electron-rich arene thiophene
proceeded in good yield (entry 1). No reaction took place when tol-
uene and 1,3-xylene were used (entries 2 and 3). A reaction of 4-
nitrobenzaldehyde with anisole in the presence of NaHSO4ÁSiO2
proceeded smoothly at 130 °C in good yield (82%), but only a trace
amount of desired product was observed at a slightly lower tem-
perature of 115 °C (entry 4). Substrates such as 2,4-dimethoxyben-
zene and 1,2,4-trimethoxybenzene bearing more electron-rich
groups significantly produced the products at a lower temperature
of 115 °C and in a shorter reaction time (compared with substrate
anisole of entry 4) with yields of 79% and 95%, respectively (entries
5 and 6). However the reaction for phenol afforded a mixture of the
normal product and a regioisomer (entry 7). Notably, the naphtha-
lene derivative was also prepared using substrate 1-methoxynaph-
thalene in a good yield (entry 9).
1. Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.
2. Muthyala, R.; Katritzky, A. R.; Lan, X. Dyes Pigment 1994, 25, 303.
´
3. Kocienski, P. J. Protecting Groups, 3rd ed.; Georg Thieme: Stuttgart, 2003.
4. (a) Sanguinet, L.; Twieg, R. J.; Wiggers, G.; Mao, G.; Singer, K. D.; Petschek, R. G.
Tetrahedron Lett. 2005, 46, 5121; (b) Shagufta, S. K. D.; Panda, G. Tetrahedron
Lett. 2005, 46, 3097.
5. (a) Yamato, M.; Hashigaki, K.; Yasumoto, Y.; Sakai, J.; Luduena, R. E.; Banerjee,
A.; Tsukagoshi, S.; Tashiro, T.; Tsuruo, T. J. Med. Chem. 1987, 30, 1897; (b) Sato,
T.; Kise, H. Yukagaku 1988, 37, 166; (c) Asakura, K.; Matsumura, S.; Yoshikawa,
S. Yukagaku 1988, 37, 265; (d) Mibu, N.; Sumoto, K. Chem. Pharm. Bull. 2000, 48,
1810; (e) Mibu, N.; Yokomizo, K.; Uyeda, M.; Sumoto, K. Chem. Pharm. Bull.
2003, 51, 1325; (f) Sumoto, K.; Mibu, N.; Yokomizo, K.; Uyeda, M. Chem. Pharm.
Bull. 2002, 50, 298; (g) Poupelin, J. P.; Saint-Ruf, G.; Foussard-Blanpin, O.;
Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. Eur. J. Med. Chem. 1978, 13, 67; (h)
McNaughton-Smith, G. A.; Rigdon G. C.; Stocker, J. PCT Int. Appl. WO
2000050026, 2000; Chem. Abstr. 2000, 133, 187954; (i) Santhosh, K. C.; Paul,
G. C.; De Clercq, E.; Pannecouque, C.; Witvrouw, M.; Loftus, T. L.; Turpin, J. A.;
Buckheit, R. W., Jr.; Cushman, M. J. Med. Chem. 2001, 44, 703; (j) Finer, J. T.;
Chabala, J. C.; Lewis, E. PCT Int. Appl. WO 2002056880, 2002; Chem. Abstr. 2002,
137, 124985.
6. (a) Schaarschmidt, A.; Herman, L.; Szemzo, B. Ber. 1926, 58, 1914; (b) Roberts,
R. M.; EI-Khawaga, A. M.; Sweeney, K. M.; EI-Zohry, M. F. J. Org. Chem. 1987, 52,
1591. and references cited therein; (c) Goossens, R.; Smet, M.; Dehaen, W.
Tetrahedron Lett. 2002, 43, 6605.
7. Prakash, G. K. S.; Panja, C.; Shakhmin, A.; Shah, E.; Mathew, T.; Olah, G. A. J.
Org.Chem. 2009, 74, 8659.
In summary, a new approach to access multi-substituted triar-
ylmethanes has been developed via a bisarylation of various aryl
aldehydes with electron-rich arenes in the presence of NaHSO4ÁSiO2.
This new approach features high yield, mild reaction conditions, and
environmental friendliness, and proves to be an efficient method for
the synthesis of valuable triarylmethane derivatives.
8. Guzmán-Lucero, D.; Guzmán, J.; Likhatchev, D.; Martínez-Palou, R. Tetrahedron
Lett. 2005, 46, 1119.
9. Sanjeeva Reddy, Ch.; Nagaraj, A.; Srinivas, A.; Purnachandra Reddy, G. Indian J.
Chem., Sect. B 2009, 48, 248.
10. Nair, V.; Abhilash, K. G.; Vidya, N. Org. Lett. 2005, 7, 5857.
11. Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72, 3100.
12. Li, Z. X.; Duan, Z.; Kang, J. X.; Wang, H. Q.; Yu, L. J.; Wu, Y. J. Tetrahedron 2008,
64, 1924.
13. Chandrasekhar, S.; Khatun, S.; Rajesh, G.; Raji Reddy, Ch. Tetrahedron Lett. 2009,
50, 6693.
Acknowledgements
We are grateful for financial support from National Science &
Technology Major Project ‘Key New Drug Creation and Manufac-