390
N. M. Garrido et al.
LETTER
(13) For reviews, see: (a) Hiersemann, M.; Nubbemeyer, U. The
Claisen Rearrangement: Methods and Applications.; Wiley
Interscience: Weinheim, 2007. (b) Martin Castro, A. M.
Chem. Rev. 2004, 104, 2939. (c) Chai, Y.; Hong, S.-P.;
Lindsay, H. A.; McFarland, C.; McIntosh, M. C.
2.72 (td, J = 11.8, 1.8 Hz, 1 H, H-6), 3.09 (d, J = 11.4 Hz,
1 H, H-6), 3.40 (dt, J = 9.8, 4.1 Hz, 1 H, H-3), 3.52 (d,
J = 9.0 Hz, 1 H, H-2), 4.06 (d, J = 12.3 Hz, 1 H, OCHAH),
4.44 (d, J = 12.3 Hz, 1 H, OCHHB), 7.26–7.45 (m, 7 H,
ArH), 7.68 (s, 1 H, ArHFpara). 13C NMR (100 MHz, CDCl3):
d = 24.9 (CH2, C-5), 31.3 (CH2, C-4), 46.6 (CH2, C-6), 67.6
(CH, C-2), 70.0 (CH2, OCH2), 81.3 (CH, C-3), 121.1 (CH,
ArFpara), 121.9 (C, CCF3), 123.2 (C, q, J = 271.0 Hz, CCF3),
124.6 (C, CCF3), 127.2 (2 × CH, ArFortho), 127.9 (3 × CH,
Phortho + para), 128.3 (2 × CH, Phmeta), 131.3 (C, q, J = 33.0 Hz,
CCF3), 141.1 (C, CipsoF), 141.6 (C, Cipso). HRMS (ESI): m/z
[M + H]+ calcd for C20H20ONF6: 404.1449; found: 404.1421.
(20) Doi, M.; Nishi, Y.; Kiritoshi, N.; Iwata, T.; Nago, M.;
Nakano, H.; Uchiyama, S.; Nakazawa, T.; Wakamiya, T.;
Kobayashi, Y. Tetrahedron 2002, 58, 8453.
Tetrahedron 2002, 58, 2905. (d) Enders, D.; Knopp, M.;
Schiffers, R. Tetrahedron: Asymmetry 1996, 7, 1847.
(e) Ziegler, F. E. Chem. Rev. 1988, 88, 1423.
(14) To our knowledge, this is the first anionic allylic acetate
rearrangement. Nevertheless, Prof. Matthias C. McIntosh et
al. (personal communication) have observed a product that
could be derived from such a rearrangement in a bis-allylic
ester system.
(15) A diastereomeric excess of 89% was measured by 1H NMR
spectroscopic analysis of the crude product and >95% after
crystallization. With a t-Bu ester of 4 we achieved >95% de
in the crude material (ref. 9). An ee of >95% is consistent
with the high optical purity of the lithium amide used.
(16) Prasad, K. R.; Anbarasan, P. Tetrahedron 2006, 62, 8303.
(17) Mamos, P.; Karigiannis, G.; Athanassopoulos, C.; Bichta,
S.; Kalpaxis, D.; Papaioannou, D. Tetrahedron Lett. 1995,
36, 5187.
(21) Tsunoda, T.; Yamamiya, Y.; Kawamura, Y.; Itô, S.
Tetrahedron Lett. 1995, 36, 2529.
(22) Paulvannan, K.; Hale, R.; Sedehi, D.; Chen, T. Tetrahedron
2001, 57, 9677.
(23) (a) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103,
5454. (b) Elliott, J.; Hall, D.; Warren, S. Tetrahedron Lett.
1989, 30, 601.
(18) (a) Demnitz, F. W. J.; Philippini, C.; Raphael, R. A. J. Org.
Chem. 1995, 60, 5114. (b) Cooper, M. S.; Heaney, H.;
Newbold, J.; Sanderson, W. R. Synlett 1990, 533.
(24) (a) Bhaskar, G.; Rao, B. V. Tetrahedron Lett. 2003, 44, 915.
(b) Cherian, S. K.; Kumar, P. Tetrahedron: Asymmetry
2007, 18, 982.
(25) All compounds were fully characterized by a range of
methods including high-resolution mass spectrometry; the
physical and spectroscopic data of reported compounds were
in full agreement with those reported in the literature.
(19) Physical Data of (–)-(2S,3R)-1: [a]D26 –36.0 (c 0.85, CHCl3).
IR (film): 2929, 2857, 1373, 1346, 1278, 1174, 1133, 887,
843, 756, 700 cm–1. 1H NMR (400 MHz, CDCl3): d = 1.46
(dq, J = 12.6, 4.0 Hz, 1 H, H-4), 1.67–1.89 (m, 1 H, H-5),
1.83 (d, J = 13.1 Hz, 1 H, H-5), 2.26–2.35 (m, 1 H, H-4),
Synlett 2010, No. 3, 387–390 © Thieme Stuttgart · New York