1848
X. Fang et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1844–1848
Table 4
References and notes
Pharmacokinetic profile for ROCK-II inhibitors in ratsa
1. Nakagawa, O.; Fujisawa, K.; Ishizaki, T.; Saito, Y.; Nakao, K.; Narumiya, S. FEBS
Lett. 1996, 392, 189.
2. Riento, K.; Ridley, A. J. Nat. Rev. Mol. Cell Biol. 2003, 4, 446.
3. Uehata, M.; Ishizaki, T.; Satoh, H.; Ono, T.; Kawahara, T.; Morishita, T.;
Tamakawa, H.; Yamagami, K.; Inui, J.; Maekawa, M.; Narumiya, S. Nature 1997,
389, 990.
Compd Cl (mL/
min/kg)
Vss (L/
kg)
t1/2
(h)
Cmax po
M)
AUC po
Mꢁh)
Oral F
(%)
(l
(l
25
1.4
0.27
0.14
0.49
0.10
1.3
2.7
2.7
1.7
5.0
1.5
2.6
8.00
2.85
0.58
4.60
0.05
0.66
43.4
63.2
2.36
87.9
0.15
9.63
66
46
13
26
3
(R)-25
(S)-25
43
0.66
4.7
0.25
16
4. Rao, V. P.; Epstein, D. L. Biodrugs 2007, 21, 167.
5. Doe, C.; Bentley, R.; Behm, D. J.; Lafferty, R.; Stavenger, R.; Jung, D.; Bamford,
M.; Panchal, T.; Grygielko, E.; Wright, L. L.; Smith, G. K.; Chen, Z. X.; Webb, C.;
Khandekar, S.; Yi, T.; Kirkpatrick, R.; Dul, E.; Jolivette, L.; Marino, J. P.; Willette,
R.; Lee, D.; Hu, E. D. J. Pharmacol. Exp. Ther. 2007, 320, 89.
19
49
1.4
0.22
15
a
Data was generated from three determinations. Formulated and dosed as
6. Waki, M.; Yoshida, Y.; Oka, T.; Azuma, M. Curr. Eye Res. 2001, 2, 470.
7. Schirok, H.; Kast, R.; Figueroa-Perez, S.; Bennabi, S.; Gnoth, M. J.; Feurer, A.;
Heckroth, H.; Thutewohl, M.; Paulsen, H.; Knorr, A.; Huetter, J.; Lobell, M.;
Muenter, K.; Geiss, V.; Ehmke, H.; Lang, D.; Radtke, M.; Mittendorf, J.; Stasch, J.
P. ChemMedChem 2008, 3, 1893.
8. Stavenger, R. A.; Cui, H. F.; Dowdell, S. E.; Franz, R. G.; Gaitanopoulos, D. E.;
Goodman, K. B.; Hilfiker, M. A.; Ivy, R. L.; Leber, J. D.; Marino, J. P.; Oh, H. J.; Viet,
A. Q.; Xu, W. W.; Ye, G. S.; Zhang, D. H.; Zhao, Y. D.; Jolivette, L. J.; Head, M. S.;
Semus, S. F.; Elkins, P. A.; Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.; Jung,
D. K.; Wright, L. L.; Smith, G. K.; Behm, D. J.; Doe, C. P.; Bentley, R.; Chen, Z. X.;
Hu, E. D.; Lee, D. J. Med. Chem. 2007, 50, 2.
9. Wu, F.; Büttner, F. H.; Chen, R.; Hickey, E.; Jakes, S.; Kaplita, P.; Kashem, M. A.;
Kerr, S.; Kugler, S.; Paw, Z.; Prokopowicz, A.; Shih, C.-K.; Snow, R.; Young, E.;
Cywin, C. L. Bioorg. Med. Chem. Lett. 2010, 20, 3235.
10. Sessions, E. H.; Yin, Y.; Bannister, T. D.; Weiser, A.; Griffin, E.; Pocas, J.;
Cameron, M. D.; Ruiz, C.; Lin, L.; Schürer, S. C.; Schröter, T.; LoGrasso, P.; Feng,
Y. B. Bioorg. Med. Chem. Lett. 2008, 18, 6390.
11. Chen, Y. T.; Bannister, T. D.; Weiser, A.; Griffin, E.; Lin, L.; Ruiz, C.; Cameron, M.
D.; Schürer, S.; Duckett, D.; Schröter, T.; LoGrasso, P.; Feng, Y. Bioorg. Med.
Chem. Lett. 2008, 18, 6406.
12. Feng, Y.; Yin, Y.; Weiser, A.; Griffin, E.; Cameron, M. D.; Lin, L.; Ruiz, C.; Schürer,
S. C.; Inoue, T.; Rao, P. V.; Schröter, T.; LoGrasso, P. J. Med. Chem. 2008, 51, 6642.
13. Yin, Y.; Cameron, M. D.; Lin, L.; Khan, S.; Schröter, T.; Grant, W.; Pocas, J.; Chen,
Y. T.; Schürer, S.; Pachori, A.; Lo Grasso, P.; Feng, Y. ACS Med. Chem. Lett. 2010, 1,
175.
14. Fang, X.; Yin, Y.; Chen, Y. T.; Yao, L.; Wang, B.; Cameron, M. D.; Lin, L.; Khan, S.;
Ruiz, C.; Schröter, T.; Grant, W.; Weiser, A.; Pocas, J.; Pachori, A.; Schürer, S.;
Lograsso, P.; Feng, Y. J. Med. Chem. 2010, 53, 5727.
15. In this communication, only the biological data for ROCK-II is presented. ROCK-
I inhibition was also assessed, however isoform selectivity of compounds in
this series did not exceed 10-fold.
described in Ref. 17.
reduced inhibition of ROCK-II, and more than 1200-fold selectivity
over PKA was observed for ether 19. Thus, other compounds con-
taining the C-8 methoxy group were synthesized and evaluated.
In general, these compounds displayed 10- to 50-fold improve-
ment in selectivity for ROCK-II compared to their counterparts
with no C-8 substituent. Chromans 45 and 46 demonstrated
1000- and 2500-fold greater affinity for ROCK-II over PKA, respec-
tively. The selectivity of benzodioxane 48 was significantly en-
hanced compared to quinazolinone 1, and compound 49 had a
30-fold increase from quinazolinone 34 in ROCK-II inhibition.
ppMLC assays were performed on these compounds and chromans
43 and 45 were equipotent in cells as benzodioxane 1. Several
other inhibitors also had IC50 values less than 50 nM in the cell-
based assay. A notable exception is tetrahydronaphthalene 47,
which showed no inhibition at 2.7 lM despite good potency in
the enzyme assay. We concluded that both the 60-substituted chro-
man moiety and the 8-methoxyquinazolinone group contributed
to improved PKA selectivity with high ROCK affinity, and the com-
bination of these two factors (chroman 43) led to a particularly
desirable profile. Based upon the higher ROCK affinity of (R)-25
versus its (S)-enantiomer, the corresponding (R)-enantiomer of
quinazolinone 43 is expected to be preferred.
16. Schröter, T.; Griffin, E.; Weiser, A.; Feng, Y.; LoGrasso, P. Biochem. Biophys. Res.
Commun. 2008, 374, 356.
The PK data of selected compounds in Sprague–Dawley rats was
next determined (Table 4). Quinazolinones 25 and 43 showed low
17. Compounds were formulated at 1 mg/mL in a 1:1:8 DMSO:Tween 80:water
solution and dosed at 1 mg/kg intravenously into the femoral vein or 2 mg/kg
by oral gavage.
18. Gohda, K.; Hakoshima, T. P-Loop Pliability of Rho-Kinase for Inhibitor Binding.
In Drug Design Research Perspectives; Kaplan, S. P., Ed.; Nova Science Publishers:
Hauppauge, 2007; pp 39–55.
19. Dolzhenko-Podchezertseva, A. V.; Korkodinova, L. M.; Vasilyuk, M. V.; Kotegov,
V. P. Pharm. Chem. J. 2002, 36, 647.
20. Wan, Z.-K.; Wacharasindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J.
Org. Chem. 2007, 72, 10194.
21. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
22. Feng, Y.; Lograsso, P.; Bannister, T.; Schroeter, T.; Fang, X.; Yin, Y.; Chen, Y. T.;
Sessions, H.; Chowdhury, S.; Luo, J.; Vojkovsky, T. WO 2010056758, 2010.
23. Chen, Y. T.; Vojkovsky, T.; Fang, X.; Pocas, J. R.; Grant, W.; Schröter, T.;
LoGrasso, P.; Bannister, T. D.; Feng, Y. Med. Chem. Commun. 2011, 2, 73.
24. Sessions, E. H.; Smolinski, M.; Wang, B.; Frackowiak, B.; Chowdhury, S.; Yin, Y.;
Chen, Y. T.; Ruiz, C.; Lin, L.; Pocas, J.; Schröter, T.; Cameron, M. D.; LoGrasso, P.;
Feng, Y.; Bannister, T. D. Bioorg. Med. Chem. Lett. 2010, 20, 1939.
25. Synthesis of quinazolines (S)-25 and (R)-25 involved modifications of the
reactions described in Scheme 1. In brief, the carboxylic acid (prepared in Ref.
20) and aniline were coupled with EDC and HOAt in dichloromethane without
the presence of base. The following Suzuki heteroarylation was then performed
with sodium bicarbonate in place of potassium carbonate as the base.
clearance, low volume of distribution, high AUC, and high oral Cmax
.
Compound 49 also displayed low clearance and volume of distribu-
tion, but with lower oral absorption. Comparing the pharmacoki-
netic properties of the enantiomer of inhibitor 25, the eutomer,
(R)-25 was more favorable for systemic applications. Less desirable
systemic PK properties were observed for quinazolinone 19, which
was likely ascribed to its dimethylaminoethoxy group.
In conclusion, we have described a series of quinazoline and 4-
quinazolinone pyrazoles as potent ROCK inhibitors. SAR studies at
the C-2, C-4 and C-8 positions of the quinazoline scaffold led to the
identification of several chroman analogs with excellent affinity for
ROCK and selectivity over PKA. In addition, compounds 25 and 43
possessed oral exposure levels favorable for systemic applications.
Future studies to be reported in due course include more extensive
target selectivity profiling of these potent ROCK inhibitors26 as well
as in vivo pharmacological studies to assess their efficacy as ther-
apeutic agents for hypertension or glaucoma.
26. Compounds 9 and 25 were also screened against three other kinases, MRCK
a,
JNK3, and p38 and no inhibition was observed at 20 M concentration.
l
Acknowledgments
We thank Prof. William Roush and Prof. Patrick Griffin for their
support.