combined organic layers were washed with saturated aqueous
NaCl (10 mL), dried over anhydrous MgSO4, filtered and the
internal standard (dodecahydrotriphenylene) was added. Solvent
was removed under vacuum. The residue was dissolved in CDCl3
and analyzed by 1H NMR. Yields were determined by 1H NMR
against dodecahydrotriphenylene as the internal standard.
A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–1309; (j) R. H.
Crabtree, J. Organomet. Chem., 2005, 690, 5451–5457; (k) J. A. Mata,
M. Poyatos and E. Peris, Coord. Chem. Rev., 2007, 251, 841–859; (l) E.
Peris and R. H. Crabtree, Coord. Chem. Rev., 2004, 248, 2239–2246.
2 For non-group 10 metal catalyzed coupling reactions, see: (a) S. Iyer,
J. Organomet. Chem., 1995, 490, C27–C28; (b) S. Iyer, C. Ramesh, A.
Sarkar and P. P. Wadgaonkar, Tetrahedron Lett., 1997, 38, 8113–8116;
(c) Y. Ikeda, T. Nakamura, H. Yorimitsu and K. Oshima, J. Am. Chem.
Soc., 2002, 124, 6514–6515; (d) T. Fujioka, T. Nakamura, H. Yorimitsu
and K. Oshima, Org. Lett., 2002, 4, 2257–2259; (e) A. Furstner and R.
Martin, Chem. Lett., 2005, 34, 624–629; (f) I. P. Beletskaya and A. V.
Cheprakov, Coord. Chem. Rev., 2004, 248, 2337–24.
X-ray structure determinations
Data was collected at -100 ◦C on a Nonius Kappa CCD diffrac-
tometer, using the COLLECT program.21 Cell refinement and
data reductions used the programs DENZO and SCALEPACK.22
SIR9723]was used to solve the structures and SHELXL9724 was
used to refine the structures. ORTEP-3 for Windows25 was used for
molecular graphics and PLATON26 was used to prepare material
for publication. H atoms were placed in calculated positions with
3 For recent or influential Ni catalyzed coupling reactions, see: (a) P.
L. Chiu, C.-L. Lai, C.-F. Chang, C.-H. Hu and H. M. Lee,
Organometallics, 2005, 24, 6169–6178; (b) T. Schaub and U. Radius,
Chem.–Eur. J., 2005, 11, 5024–5030; (c) K. Inamoto, J.-I. Kuroda, K.
Hiroya, Y. Noda, M. Watanabe and T. Sakamoto, Organometallics,
2006, 25, 3095–3098; (d) C.-C. Lee, W.-C. Ke, K.-T. Chan, C.-L. Lai,
C.-H. Hu and H. M. Lee, Chem.–Eur. J., 2007, 13, 582–591; (e) Z. Xi,
X. Zhang, W. Chen, S. Fu and D. Wang,, Organometallics, 2007, 26,
6636–6642; (f) F. Li, J. J. Hu, L. L. Koh and T. S. A. Hor, Dalton Trans.,
2010, 39, 5231–5241; (g) S. Saito, S. Ohtani and N. Miyaura, J. Org.
Chem., 1997, 62, 8024–8030; (h) S. Saito, M. Sakai and N. Miyaura,
Tetrahedron Lett., 1996, 37, 2993–2996.
U
iso constrained to be 1.5 times Ueq of the carrier atom for methyl
protons and 1.2 times Ueq of the carrier atom for all other hydrogen
atoms.
For complex 3b·4DMF, there is one A ALERT because of the
Solvent Accessible Void of 291 A3. This was due to a disordered
solvent molecules which could not be modelled. This electron
density was handled by using the SQUEEZE option in PLATON25
There is a SQUEEZE addition at the end of the CIF. The two B
ALERTs are due to the very different types of C atoms in the
structure, ranging from phenyl and other rigid rings to disordered
tert-butyl groups. The H atoms on the C atoms show the same
range of Ueq, because they are determined by the values for the
attached C atoms.
For complex 4a, the Hirshfeld test B ALERTs assume inde-
pendent bonds, not clusters such as Ag4Br4 in this structure. The
high Ueq for Ag1 and Ag2 is possibly due to some disorder which
could not be modelled. The low Ueq for Br2 is the other side of
the possible disorder of the Ag atoms. The nearest atoms to Br2
are Ag1 and Ag2. The low bond precision of C–C bonds is a
consequence of the heavy atom cluster.
4 SciFinder Version 2007 Search performed May 5, 2011.
5 (a) K. S. Kasprzak, B. A. Diwan, J. M. Rice, M. Misra, C. W. Riggs,
R. Olinski and M. Dizdaroglu, Chem. Res. Toxicol., 1992, 5, 809–815;
(b) K. S. Kasprzak, F. W. Sunderman Jr. and K. Salnikow, Mutat. Res.,
Fundam. Mol. Mech. Mutagen., 2003, 533, 67–97; (c) J. Kielhorna, C.
Melber, D. Keller and I. Mangelsdorf, Int. J. Hyg. Environ. Health,
2002, 205, 417–432.
6 (a) W. A. Herrmann, C. P. Reisinger and M. Spiegler, J. Organomet.
Chem., 1998, 557, 93–96; (b) H. M. Lee, C. Y. Lu, C. Y. Chen, W. L.
Chen, H. C. Lin, P. L. Chiu and P. Y. Cheng, Tetrahedron, 2004, 60,
5807–5825; (c) C. Tubaro, A. Biffis, C. Gonzato, M. Zecca and M.
Basato, J. Mol. Catal. A: Chem., 2006, 248, 93–98; (d) T. Scherg, S. K.
Schneider, G. D. Frey, J. Schwarz, E. Herdtweck and W. A. Herrmann,
Synlett, 2006, 2894–2907; (e) T. A. P. Paulose, J. A. Olson, J. W. Quail
and S. R. Foley, J. Organomet. Chem., 2008, 693, 3405–3410; (f) F. E.
Hahn and M. Foth, J. Organomet. Chem., 1999, 585, 241–245; (g) M.
V. Baker, D. H. Brown, P. V. Simpson, B. W. Skelton and A. H. White,
Dalton Trans., 2009, 7294–7307; (h) P. V. Simpson, B. W. Skelton, D.
H. Brown and M. V. Baker, Eur. J. Inorg. Chem., 2011, 1937–1952.
7 C.-S. Lee, S. Pal, W.-S. Yang, W.-S. Hwang and I. J. B. Lin, J. Mol.
Catal. A: Chem., 2008, 280, 115–121.
8 (a) N. E. Leadbeater and M. Marco, Angew. Chem., Int. Ed., 2003, 42,
1407–1409; (b) N. E. Leadbeater and M. Marco, J. Org. Chem., 2003,
68, 5660–5667.
9 R. K. Arvela, N. E. Leadbeater, M. S. Sangi, V. A. Williams,
P. Granados and R. D. Singer, J. Org. Chem., 2005, 70, 161–
168.
CCDC 697184–697187† contain the supplementary crystallo-
graphic data for 3a, 3b·4DMF, 4a and 5a·0.5DMF. The data
ac.uk/conts/retrieving.html, or from the Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
10 W. A. Herrmann, J. Schwarz, M. Gardiner and M. Spiegler, J.
Organomet. Chem., 1999, 575, 80–86.
11 W. A. Herrmann and J. Schwarz, Organometallics, 1999, 18, 4082–4089.
12 R. E. Douthwaite, D. Hauessinger, M. L. H. Green, P. J. Silcock, P. T.
Gomes, A. M. Martins and A. A. Danopoulos, Organometallics, 1999,
18, 4584–4590.
13 R. E. Douthwaite, M. L. H. Green, P. J. Silcock and P. T. Gomes,
Organometallics, 2001, 20, 2611–2615.
Acknowledgements
We gratefully thank the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) for financial support and the
Saskatchewan Structural Sciences Centre (SSSC).
14 J. Berding, M. Lutz, A. L. Spek and E. Bouwman, Organometallics,
2009, 28, 1845–1854.
15 (a) H. M. J. Wang and I. J. B. Lin, Organometallics, 1998, 17, 972–
975; (b) D. S. McGuinness and K. J. Cavell, Organometallics, 2000, 19,
741–748; (c) A. M. Magill, D. S. McGuinness, K. J. Cavell, G. J. P.
Britovsek, V. C. Gibson, A. J. P. White, D. J. Williams, A. H. White and
B. W. Skelton, J. Organomet. Chem., 2001, 617–618, 546–560; (d) V.
Ceasar, S. Bellemin-Laponnaz and L. H. Gade, Organometallics, 2002,
21, 5204–5208; (e) D. J. Nielson, K. J. Cavell, B. W. Skelton and A.
H. White, Inorg. Chim. Acta, 2002, 327, 116–125; (f) M. C. Perry, X.
Cui and K. Burgess, Tetrahedron: Asymmetry, 2002, 13, 1969–1972;
(g) F. Glorius, G. Altenhoff, R. Goddard and C. Lehmann, Chem.
Commun., 2002, 2704–2705; (h) P. Arnold, Heteroat. Chem., 2002,
13, 534–539; (i) L. C. Bonnet, R. E. Douthwaite and R. Hodgson,
Organometallics, 2003, 22, 4384–4386; (j) A. A. Danopoulos, A. A.
D. Tulloch, S. Winston, G. Eastham and M. B. Hursthouse, Dalton
References
1 For recent reviews, see: (a) J. Tsuji, Palladium Reagents and Catalysts,
Wiley, New York, 2004; (b) A. de Meijere and P. J. Diederich, ed., Metal-
catalyzed Cross-coupling Reactions, Wiley-VCH, Weinheim, 2004; (c) E.
Negishi and A. de Mejere, Handbook of Organopalladium Chemistry for
Organic Synthesis, Wiley-VCH, Weinheim, 2002; (d) S. P. Nolan, Ed., N-
Heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinhein, 2006; (e) E.
B. Kantchev, C. J. O’Brien and M. G. Organ, Angew. Chem., Int. Ed.,
2007, 46, 2768–2813; (f) F. E. Hahn and M. C. Jahnke, Angew. Chem.,
Int. Ed., 2008, 47, 3122–3172; (g) F. Glorius and Ed, Top. Organomet.
Chem., 2007, 21, 1–218; (h) W. A. Herrmann, K. Ofele, D. V. Preysing
and S. K. Schneider, J. Organomet. Chem., 2004, 687, 229–248; (i) W.
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 251–260 | 259
©