Table 3 Complex 4-catalyzed oxidative coupling of tertiary amines
with pyrroles
Table 5 Recycling the silica supported terpyridine ligand 3 for the
oxidative coupling of tetrahydroisoquinoline 6a with indole 5a in the
presence of Fe(II) salta
Cycle
Conv.b (%)
Yieldc (%)
1
2
3
4
5
100
100
100
100
100
79
78
78
74
72
a
Indole 5a (0.24 mmol), tetrahydroisoquinoline 6a (0.2 mmol),
tBuOOH (0.6 mmol), 3 (3 mol%), Fe(ClO4)2ꢀ6H2O (3 mol%), 1 mL
toluene, reflux, 12 h. Determined by 1H NMR based on tetra-
c
hydroisoquinoline 6a. Isolated yield.
b
good product yields (72–79%) were obtained in five consecutive
runs without apparent loss of catalytic activity.
In summary, an active silica supported iron terpyridine
complex for oxidative C–C cross-coupling reactions of tertiary
amines with various carbon nucleophiles has been developed.
The ligand could be recycled by filtration and reused for five
times without apparent loss of catalytic activity.
Reaction conditions: a Pyrroles (0.2 mmol), tetrahydroisoquinoline 6a
t
(0.2 mmol), BuOOH (0.5 mmol), 4 (3 mol%), 1 mL toluene, reflux,
We are thankful for the financial support of The University
of Hong Kong (University Development Fund), Hong Kong
Research Grant Council (HKU 7052/07P), Research Grants
Council (CityU 2/06C and HKU1/CRF/08) and the Areas of
Excellence Scheme established under the University Grants
Committee of the Hong Kong SAR, China (AoE/P-10/01).
12 h. b Pyrroles (0.8 mmol), tetrahydroisoquinoline 6a (0.2 mmol),
tBuOOH (0.6 mmol), 4 (3 mol%), 1 mL toluene, reflux, 12 h.
c Determined by 1H NMR based on tetrahydroisoquinoline. d Yield
based on the conversion.
Notes and references
Table 4 Complex 4-catalyzed oxidative coupling of tertiary amines
with alkynes
1 Reviews: (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (b) T. Naota,
H. Takaya and S.-I. Murahashi, Chem. Rev., 1998, 98, 2599;
(c) S.-I. Murahashi and D. Zhang, Chem. Soc. Rev., 2008, 37, 1490.
2 (a) Z. Li and C.-J. Li, Org. Lett., 2004, 6, 4997; (b) Z. Li and
C.-J. Li, J. Am. Chem. Soc., 2004, 126, 11810; (c) Z. Li and C.-J. Li,
J. Am. Chem. Soc., 2005, 127, 3672; (d) Z. Li and C.-J. Li, J. Am.
Chem. Soc., 2005, 127, 6968; (e) Z. Li, D. S. Bohle and C.-J. Li,
Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 8928.
3 (a) M. Niu, Z. Yin, H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem.,
2008, 73, 3961; (b) L. Chu, X. Zhang and F.-L. Qing, Org. Lett.,
2009, 11, 2197.
4 (a) S.-I. Murahashi, N. Komiya, H. Terai and T. Nakae, J. Am.
Chem. Soc., 2003, 125, 15312; (b) S.-I. Murahashi, N. Komiya
and H. Terai, Angew. Chem., Int. Ed., 2005, 44, 6931;
(c) S.-I. Murahashi, T. Nakae, H. Terai and N. Komiya, J. Am.
Chem. Soc., 2008, 130, 11005.
5 A. J. Catino, J. M. Nichols, B. J. Nettles and M. P. Doyle, J. Am.
Chem. Soc., 2006, 128, 5648.
6 (a) H. Fujii, Coord. Chem. Rev., 2002, 226, 51; (b) J.-U. Rohde,
J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski,
a Alkynes (0.24 mmol), amines (0.2 mmol), tBuOOH (0.6 mmol),
4 (3 mol%), 1 mL toluene, reflux, 12 h. b Determined by 1H NMR
based on amines. c Yield based on the conversion.
A. Stubna, E. Munck, W. Nam and L. Que Jr, Science, 2003,
¨
299, 1037.
7 C. M. Rao Volla and P. Vogel, Org. Lett., 2009, 11, 1701.
8 M. Ohta, M. P. Quick, J. Yamaguchi, B. Wunsch and K. Itami,
¨
Chem.–Asian J., 2009, 4, 1416.
9 (a) R. Murugavel and H. W. Roesky, Angew. Chem., Int. Ed. Engl.,
1997, 36, 477; (b) C.-J. Liu, S.-G. Li, W.-Q. Pang and C.-M. Che,
Chem. Commun., 1997, 65; (c) C.-J. Liu, W.-Y. Yu, S.-G. Li and
C.-M. Che, J. Org. Chem., 1998, 63, 7364.
10 (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710; (b) D. Zhao, J. Feng, Q. Huo,
N. Melosh and G. D. Stucky, Science, 1998, 279, 548;
(c) C. M. Crudden, M. Sateesh and R. Lewis, J. Am. Chem.
Soc., 2005, 127, 10045; (d) K. Feng, R.-Y. Zhang, L.-Z. Wu,
B. Tu, M.-L. Peng, L.-P. Zhang, D. Zhao and C.-H. Tung,
J. Am. Chem. Soc., 2006, 128, 14685.
Fe(ClO4)2ꢀ6H2O (3 mmol%) in toluene and the suspended
reaction mixture was subsequently used to catalyze the
oxidative reaction of tetrahydroisoquinoline 6a with indole
5a under reflux for 12 h. Upon completion of the reaction, the
initial purple complex turned white, revealing that demetalation
took place. The solid supported ligand 3 could be recycled
simply by filtration. The recycled ligand reacted with a new
batch of Fe(ClO4)2ꢀ6H2O (3 mmol%) to regenerate the purple
complex in situ, which was used for consecutive reactions. As
depicted in Table 5, high substrate conversion (100%) and
11 P. Liu, E. L.-M. Wong, A. W.-H. Yuen and C.-M. Che, Org. Lett.,
2008, 10, 3275.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2739–2741 | 2741