2574
O. Mendoza et al. / Tetrahedron Letters 51 (2010) 2571–2575
Table 2 (continued)
Entry
Electrophile
Nucleophile
Product
T (°C)
t (min)
% Cat
Yieldc (%)
OTIPS
19
OTMS
O
OAc
15
29b
rt
20
5% HNTf2
80
2
33
a
b
c
Reaction conditions: 0.25 mmol of electrophile, 0.3 mmol of nucleophile.
Reaction conditions: 0.25 mmol of electrophile, 0.5 mmol of nucleophile, in 1 mL CH2Cl2.10
Yields calculated from the 1H NMR spectra, based; in brackets yields of pure product after chromatography.
reaction): this was expected to favour the reversible complexation
of the carbonyl ester over the silylation of the nucleophilic carbon
atom of the enolether. It was indeed gratifying to observe that the
reaction of 19 with 6 and 7 led to good yields of benzylated prod-
ucts (entries 7 and 14). Steric hindrance favoured the less bulky
benzyl electrophile: indeed the benzylation reaction worked well
References and notes
1. Reviews: (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1982, 21, 96–108; (b)
Kobayashi, S.; Wanabe, K.; Ishitani, H.; Matsuo, J.-I.. In Science of Synthesis,
Houben–Weyl Methods of Molecular Transformations; Fleming, I., Ed.; Thieme:
Stuttgart, 2002; Vol. 4, pp 317–369; (c) Fleming, I. Pure Appl. Chem. 1983, 55,
1707–1713; (d) Hosomi, A. Acc. Chem. Res. 1988, 21, 200–206; (e) Sarkar, T. K..
In Science of Synthesis, Houben–Weyl Methods of Molecular Transformations;
Fleming, I., Ed.; Thieme: Stuttgart, 2002; Vol. 4, See also: (f) Mayr, H.; Pock, R.
Tetrahedron 1986, 42, 4211–4214; (g) Dau-Schmidt, J. P.; Mayr, H. Chem. Ber.
1994, 127, 205; (h) Mayr, H.; Gorath, G.; Bauer, B. Angew. Chem., Int. Ed. Engl.
1994, 33, 788–789.
with
a,
a0-disubstituted silyl ketene acetal 17 (entries 8 and 15).
However, the less reactive allyl tri-i-propyl and allyl trimethylsil-
anes did not react at room temperature and yielded a complex
mixture at higher temperatures. (entries 9–12 and 16–19). As ex-
pected the presence of additional activating methoxy groups on
2. AgOTf: (a) Takeda, K.; Ayabe, A.; Kawashima, H.; Harigaya, Y. Tetrahedron Lett.
1992, 33, 951–952; (b) Black, T.; Stubbs, K. A.; Stick, R. V.; Weibel, J. M.; Pale, P.
e-EROS Encyclopedia of Reagents for Organic Synthesis, 2007.; BF3: (c) Cella, J. A. J.
Org. Chem. 1982, 47, 2125–2130; B(C6F5)3: (d) Rubin, M.; Gevorgyan, V. Org.
Lett. 2001, 3, 2705–2707; (e) Schwier, T.; Rubin, M.; Gevorgyan, V. Org. Lett.
2004, 6, 1999–2001; (f) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 8345–
8350; HN(SO2F)2: (g) Kaur, G.; Kaushik, M.; Trehan, S. Tetrahedron Lett. 1997,
38, 2521–2524; InBr3: (h) Kim, S. H.; Shin, C.; Pai, A. N.; Koh, H. K.; Chang, M. H.;
Chung, B. Y.; Cho, Y. S. Synthesis 2004, 1581–1584; InCl3 (i) Yasuda, M.; Saito,
T.; Ueba, M.; Baba, A. Angew. Chem., Int. Ed. 2004, 43, 1414–1416; (j) Saito, T.;
Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem 2006, 71, 8516–8522; (k) Saito,
T.; Nishimoto, Y.; Yasuda, M.; Baba, A. J. Org. Chem. 2007, 72, 8588–8590;
LiClO4: (l) Ying, B.; Trogden, B. G.; Kohlman, D. T.; Liang, S. X.; Xu, Y. Org. Lett.
2004, 6, 1523–1526; Mg(ClO4)2: (m) Miyachi, H.; Nomura, M.; Tanase, T.;
Takahashi, Y.; Ide, T.; Tsunoda, M.; Murakami, K.; Awano, K. Bioorg. Med. Chem.
Lett. 2002, 12, 77–80; (n) Nomura, M.; Tanase, T.; Ide, T.; Tsunoda, M.; Suzuki,
M.; Uchiki, H.; Murakami, K.; Miyachi, H. J. Med. Chem. 2003, 46, 3581–3599;
(o) Usui, S.; Fujieda, H.; Suzuki, T.; Yoshida, N.; Nakagawa, H.; Miyata, N. Bioorg.
Med. Chem. Lett. 2006, 16, 3249–3254; (p) Usui, S.; Fujieda, H.; Suzuki, T.;
Yoshida, N.; Nakagawa, H.; Ogura, M.; Makishima, M.; Miyata, N. Chem. Pharm.
Bull. 2007, 55, 1053–1059; Organotin perfluorooctanesulfonates: (q) An, L.;
Peng, Z.; Orita, A.; Kurita, A.; Man-e, S.; Ohkubo, K.; Li, X.; Fukuzumi, S.; Otera, J.
Chem. Eur. J. 2006, 12, 1642–1647; rhodium complex: (r) Soga, T.; Takenoshita,
H.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1990, 63, 3122–3131; SnCl4/
ZnCl2: (s) Hayashi, M.; Inubushi, A.; Mukaiyama, T. Chem. Lett. 1987, 1975–
1978; ZrCl4: (t) Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Ravi, R.; Kunwar,
A. C. J. Org. Chem. 2006, 71, 3967–3969; ZnI2: (u) Reetz, M. T.; Walz, P.;
Huebner, F.; Huettenhain, S. H.; Heimbach, H. Chem. Ber. 1984, 117, 322–335;
(v) Collins, D. J.; Jacobs, H. A. Aust. J. Chem. 1986, 39, 2095–2110.
the phenyl ring led to excellent yields of
nones (entries 20 and 21).
a-benzylated cyclohexa-
Acetates derived from electron-rich heteroarene carbinols 10–
13 were also appropriate reagents for the delivery of an HetAr-
CH2 fragment on a silyl enolether (entries 22–26). Since acetates
derived from
a-hydroxymethyl pyrrole and b-hydroxymethyl in-
dole were rather unstable, we used the more stable N-sulfonylated
derivatives.
A simple allyl group could not be transferred (entries 27 and 28)
even if one uses a TIPS-derived carbon nucleophile at 90 °C. On the
other hand isoprenyl acetate reacted well under standard condi-
tions (entry 29).
We believe that these results demonstrated the efficiency of tri-
alkylsilyl triflimides as a powerful class of catalyst for the benzyla-
tion and allylation of various classes of silyl carbon nucleophiles.
The catalysts are generated in situ from the reaction of the com-
mercially available triflimide (1–5%) with the nucleophile. Interest-
ingly the catalytic activity can be tuned up by choosing the most
appropriate alkyl substituent on silicon. Yields are high and
work-up is easy. The precursors of the alkylating species are esters
which are non-genotoxic. In a control experiment we showed that
the corresponding benzyl alcohols could not be used since they de-
stroy the catalyst. Also the reactions do not involve any toxic me-
tal-containing catalyst. The reactions work particularly well with
electron-rich aromatic substituents. This is interesting since the
corresponding halides or tosylates are highly genotoxic. In most
cases the reactions can be performed without solvent.10 We believe
that this procedure should appeal to the synthetic chemists looking
for practical, safe and environmentally acceptable synthetic
methods.11
3. (a) Grieco, P. A.; Handy, S. T. Tetrahedron Lett. 1997, 38, 2645–2648; (b) Iovel, I.;
Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 238–
242. Angew. Chem., Int. Ed. 2005, 44, 3913–3917; (c) De Surya, K.; Richard, A. G.
Tetrahedron Lett. 2005, 46, 8345–8350; (d) Motokura, K.; Nakagiri, N.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Org. Chem. 2007, 72, 6006–6015; (e)
Rubenbauer, P.; Herdtweck, E.; Strassner, T.; Bach, T. Angew. Chem., Int. Ed.
2008, 47, 10106–10109.
4. (a) Mathieu, B.; Ghosez, L. Tetrahedron Lett. 1997, 38, 5497–5500; (b) Mathieu,
B.; de Fays, L.; Ghosez, L. Tetrahedron Lett. 2000, 41, 9561–9564; See also: (c)
Simchen, G.; Jonas, S. J. Prakt. Chem. 1998, 340, 506–512.
5. (a) Ishii, A.; Kotera, O.; Saeki, T.; Mikami, K. Synlett 1997, 1145–1146; (b)
Mikami, K.; Kotera, O.; Motoyama, Y.; Tanaka, M. Inorg. Chem. Commun. 1998, 1,
10–11.
6. (a) Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Synlett 2001, 1851–1854; (b)
Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Chem. Commun. 2002, 1564–1565; (c)
Ishihara, K.; Hiraiwa, Y. Eur. J. Org. Chem. 2006, 1837–1844; See also: (d) Hara,
K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621–5623.
7. (a) Kuhnert, N.; Peverley, J.; Robertson, J. Tetrahedron Lett. 1998, 39, 3215–
3216; (b) Cossy, J.; Lutz, F.; Alauze, V.; Meyer, C. Synlett 2002, 45–48; (c) Yu, C.-
M.; Lee, J.-Y.; So, B.; Hong, J. Angew. Chem., Int. Ed. 2002, 41, 161–163; (d)
Mathieu, B.; Ghosez, L. Tetrahedron 2002, 58, 8219–8226; (e) Inanaga, K.;
Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2005, 127, 3668–3669; (f) Othman, R. B.;
Bousquet, T.; Othman, M.; Dalla, V. Org. Lett. 2005, 7, 5335–5337; (g) Tranchant,
M. J.; Moine, C.; Othman, R. B.; Bousquet, T.; Othman, M.; Dalla, V. Tetrahedron
Lett. 2006, 47, 4447–4480; (h) Takasu, K.; Hosokawa, N.; Inanaga, K.; Ihara, M.
Acknowledgements
Funding by Sanofi-Aventis Research and Development and IECB
is gratefully acknowledged.
Supplementary data
Supplementary data associated with this article can be found, in