Y. Saito et al. / Tetrahedron Letters 51 (2010) 2606–2609
2609
We next calculated the HOMO–LUMO energy levels of these gua-
References and notes
nosine derivatives. As shown in Table 1, the energy levels of the
HOMO and LUMO obtained for N9-methylated guanine derivatives
1. (a) Printz, M.; Richert, C. Chemistry 2009, 15, 3390; (b) Greco, N. J.; Sinkeldam,
R. W.; Tor, Y. Org. Lett. 2009, 11, 1115; (c) Srivatsan, S. G.; Tor, Y. J. Am. Chem.
Soc. 2007, 129, 2044; (d) Cekan, P.; Sigurdsson, S. T. Chem. Commun. 2008, 3393.
2. (a) Venkatesan, N.; Seo, Y. J.; Kim, B. H. Chem. Soc. Rev. 2008, 37, 648; (b) Tor, Y.,
Ed.; Tetrahedron Symposium in Print, 2007, 63.; (c) Wilson, J. N.; Kool, E. T. Org.
Biomol. Chem. 2006, 4, 4265; (d) Ranasinghe, R. T.; Brown, T. Chem. Commun.
2005, 5487.
3. (a) Sessler, J. L.; Sathiosatham, M.; Doerr, K.; Lynch, V.; Abboud, K. A. Angew.
Chem., Int. Ed. 2000, 39, 1300; (b) Manet, I.; Francini, L.; Masiero, S.; Pieraccini,
S.; Spada, G. P.; Gottarelli, G. Helv. Chim. Acta 2001, 84, 2096; (c) Shi, X.;
Mullaugh, K. M.; Fettinger, J. C.; Jiang, Y.; Hofstadler, S. A.; Davis, J. T. J. Am.
Chem. Soc. 2003, 125, 10830; For examples of DNA triplexes, see: (d) Moser, H.
E.; Dervan, P. B. Science 1987, 238, 645; For examples of guanine quadruplex
formation, see: (e) Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668. and
references therein.
*
at DFT(B3LYP)/6-31G levels were consistent with experimentally
observed spectroscopic data.13 The fluorescence spectrum of
1,6-HG (3a) is red shifted from that of parent 2, consistent with the
smaller HOMO–LUMO gap by the calculation. 1,6-CNG (3b) and
1,6-AcG (3c), both of which have a larger red shift relative to 1,6-HG
(3a), have much smaller HOMO–LUMO energy gap than that of
1,6-HG (3a). On the other hand, the HOMO–LUMO energy gaps for
2,7-CNG (4a) and 2,7-AcG (4b) are larger than that of parent 2, which
are in agreement with the blue shift of their fluorescence. For N9-
methylated 1,6-CNG, the HOMO and the LUMO orbitals are broadly
distributed over the p
-system, whereas for N9-methylated 2,7-CNG,
4. Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820.
5. Saito, Y.; Matsumoto, K.; Takeuchi, Y.; Bag, S. S.; Kodate, S.; Morii, T.; Saito, I.
Tetrahedron Lett. 2009, 50, 1403.
the HOMO and LUMO are localized mainly at the guanine base and
phenyl acetylene linker (Fig. S5). These calculationsstrongly support
the view that only 1,6-disubstituted pyrene-labeled guanosine
derivatives, not the 2,7-disubstituted pyrenes, exhibit longer fluo-
rescence emission than 2.
6. Okamoto, A.; Ochi, Y.; Saito, I. Chem. Commun. 2005, 1128.
7. (a) Saito, Y.; Bag, S. S.; Kusakabe, Y.; Nagai, C.; Matsumoto, K.; Mizuno, E.;
Kodate, S.; Suzuka, I.; Saito, I. Chem. Commun. 2007, 2133; (b) Saito, Y.;
Miyauchi, Y.; Okamoto, A.; Saito, I. Tetrahedron Lett. 2004, 45, 7827; (c) Saito, Y.;
Shinohara, Y.; Bag, S. S.; Takeuchi, Y.; Matsumoto, K.; Saito, I. Tetrahedron 2009,
65, 934; (d) Matsumoto, K.; Shinohara, Y.; Bag, S. S.; Takeuchi, Y.; Morii, T.;
Saito, Y.; Saito, I. Bioorg. Med. Chem. Lett. 2009, 19, 6392; (e) Okamoto, A.; Saito,
Y.; Saito, I. J. Photochem. Photobiol. C: Photochem. Rev. 2005, 6, 108.
8. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
9. Grimshaw, J.; Trocha-Grimshaw, J. J. Chem. Soc., Perkin Trans. 1 1972, 1622.
10. Spectroscopic data for 1,6-CNG (3b): 1H NMR (400 MHz, DMSO-d6) d 2.31 (m,
1H), 3.29 (m, 1H), 3.59 (m, 1H), 3.67 (m, 1H), 3.93 (m, 1H), 4.51 (m, 1H), 4.76
(m, 1H), 5.21 (m, 1H), 6.53–6.58 (complex, 3H), 7.93–7.98 (complex, 4H), 8.33–
8.43 (complex, 6H), 8.58 (d, 1H, J = 9.1 Hz), 8.70 (d, 1H, J = 9.0 Hz), 10.84 (br,
1H); 13C NMR (DMSO-d6, 100 MHz) d 37.9, 62.7, 71.7, 84.7, 86.4, 88.5, 92.3,
92.5, 94.8, 111.7, 116.4, 117.6, 118.7, 118.9, 123.7 (ꢂ2), 126,1, 126.5, 126.5,
126.7, 127.7, 129.4, 129.6, 130.0, 130.6, 131.0, 131.7, 131.9, 132.0, 132.1, 132.8
(ꢂ2), 133.1 (ꢂ2), 151.6, 154.5, 156.6; HRMS (ESI) m/z 639.1736 calcd for
C37H24N6O4Na [M+Na]+, found 639.1757.
In summary, we have developed novel push–pull-type pyrene-
containing guanosine derivatives. The fluorescence emission of
these nucleosides, particularly, those of 1,6-CNG (3b) and 1,6-Ac
G
(3c), showed a strong solvent dependency. Such environmentally
sensitive fluorescent deoxyguanosines can be used as a powerful
tool for structural studies of nucleic acids and molecular
diagnostics.
Acknowledgment
This work was supported by a Grant-in-Aid for Scientific re-
search of MEXT, Japanese Government.
These synthesized guanosine derivatives are photostable upon UV irradiation.
11. (a) Lee, H.; Harvey, R. G. J. Org. Chem. 1986, 51, 2847; (b) Connor, D. M.; Allen, S.
D.; Collard, D. M.; Liotta, C. L.; Schiraldi, D. A. J. Org. Chem. 1999, 64, 6888.
12. Quantum yields (U) were calculated according to following reference: Morris,
Supplementary data
J. V.; Mahaney, M. A.; Huber, J. R. J. Phys. Chem. 1976, 80, 969.
13. The theoretical calculations were performed by density functional theory (DFT)
*
calculations at B3LYP/6-31G level using SPARTAN 008 for Windows
Supplementary data associated with this article can be found, in
(Wavefunction, Inc.).