pubs.acs.org/joc
stitution reactions.2 Despite the impressive progress to date,
Iridium-Catalyzed Enantioselective Allylic
Substitution of O-Allyl Carbamothioates
the construction of a carbon-sulfur bond in Ir-catalyzed
allylic substation reactions is less explored. Several transi-
tion metal complexes such as those using Pd,3 Ru,4 Rh,5 Fe,6
and Ni7 have been explored as suitable catalysts for allylic
substitution in the formation of carbon-sulfur bonds. No-
Qing-Long Xu, Wen-Bo Liu, Li-Xin Dai, and Shu-Li You*
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of
Sciences, 345 Lingling Lu, Shanghai 200032, China
€
tably, Gais and Bohme have reported the enantioselective O,
S-rearrangement of racemic O-allylic thiocarbamates, pro-
viding enantioenriched allylic sulfur compounds.3e Given the
successful application of iridium catalysts for the allylic
substitution reactions of heteroatom nucleophiles,8,9 we
envisaged that iridium-catalyzed allylic substitution reaction
with a sulfur nucleophile would provide an efficient access to
chiral sulfur-containing compounds, which are highly im-
portant synthetic intermediates.10 During our recent studies
toward this goal using Ir-catalyzed allylic substitution reac-
tion of allyl sulfinates, trisubstituted vinyl sulfones were
obtained as a result of the subsequent isomerization.11
Simultaneously, an elegant protocol, developed by Ueda
and Hartwig, afforded the enantioenriched allylic sulfones
in excellent yields and ees.12
Received March 31, 2010
To continue the development of asymmetric synthesis of
enantioenriched chiral sulfur compounds, we recently found
(4) Kondo, T.; Morisaki, Y.; Uenoyama, S.; Wada, K.; Mitsudo, T.
J. Am. Chem. Soc. 1999, 121, 8657.
(5) (a) Leong, P.; Lautens, M. J. Org. Chem. 2004, 69, 2194. (b) Zaitsev,
A. B.; Caldwell, H. F.; Pregosin, P. S.; Veiros, L. F. Chem.;Eur. J. 2009, 15,
6468.
(6) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462.
(7) Yatsumonji, Y.; Ishida, Y.; Tsubouchi, A.; Takeda, T. Org. Lett.
2007, 9, 4603.
With an [Ir(COD)Cl]2/phosphoramidite ligand system, an
allylic substitution of O-allyl carbamothioates was devel-
oped. The reaction proceeded in the favor of branched
products with up to 93:7 branched-to-linear ratio, afford-
ing chiral S-allyl carbamothioates with up to 95% ee.
(8) Allyic amination: (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc.
2002, 124, 15164. (b) Shu, C.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int.
Ed. 2004, 43, 4797. (c) Miyabe, H.; Matsumura, A.; Moriyama, K.; Takemoto,
Y. Org. Lett. 2004, 6, 4631. (d) Lipowsky, G.; Helmchen, G. Chem. commun.
2004, 116. (e) Weihofen, R.; Dahnz, A.; Tverskoy, O.; Helmchen, G. Chem.
Commun. 2005, 3541. (f) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.;
Du1bon, P.; Helmchen, G. Org. Lett. 2005, 7, 1239. (g) Leitner, A.; Shu, C.;
Hartwig, J. F. Org. Lett. 2005, 7, 1093. (h) Miyabe, H.; Yoshida, K.;
Yamauchi, M.; Takemoto, Y. J. Org. Chem. 2005, 70, 2148. (i) Singh,
O. V.; Han, H. J. Am. Chem. Soc. 2007, 129, 774. (j) Yamashita, Y.;
Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7508.
(k) Lee, J. H.; Shin, S.; Kang, J.; Lee, S.-g. J. Org. Chem. 2007, 72, 7443.
(l) Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett.
2007, 9, 3949. (m) Spiess, S.; Welter, C.; Franck, G.; Taquet, J.-P.; Helmchen,
G. Angew.Chem., Int. Ed. 2008, 47, 7652. (n) Stanley, L. M.; Hartwig, J. F.
J. Am. Chem. Soc. 2009, 131, 8971. (o) Pouy, M. J.; Stanley, L. M.; Hartwig,
Iridium-catalyzed asymmetric allylic substitution has
emerged asone ofthe most efficientmethods toformcarbon-
carbon and carbon-heteroatom bonds, particularly due to
its high regioselectivity and excellent enantioselectivity.1
Studies by Hartwig and Helmchen demonstrated cyclome-
talated iridium as the active catalytic species, which further
provided the basis for asymmetric Ir-catalyzed allylic sub-
(1) For reviews, see: (a) Miyabe, H.; Takemoto, Y. Synlett 2005, 1641.
(b) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349. (c) Helmchen, G.; Dahnz,
ꢀ
J. F. J. Am. Chem. Soc. 2009, 131, 11312. (p) Weix, D. J.; Markovic, D.;
Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 11, 2944. (q) Gnamm, C.; Krauter,
€
A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
€
C. M.; Broner, K.; Helmchen, G. Chem.;Eur. J. 2009, 15, 2050. (r) Gnamm,
(d) Helmchen, G. In Iridium Complexes in Organic Synthesis; Oro, L. A., Claver,
C., Eds.; Wiley-VCH: Weinheim, Germany, 2009; p 211.
€
C.; Brodner, K.; Krauter, C. M.; Helmchen, G. Chem.;Eur. J. 2009, 15,
(2) (a) Bartels, B.; Garcıa-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J.
Inorg. Chem. 2002, 2569. (b) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig,
J. F. J. Am. Chem. Soc. 2003, 125, 14272. (c) Madrahimov, S. T.; Markovic,
D.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7228. (d) Spiess, S.; Raskatov,
€
J. A.; Gnamm, C.; Brodner, K.; Helmchen, G. Chem.;Eur. J. 2009, 15,
11087.
10532. (s) Farwick, A.; Helmchen, G. Org. Lett. 2010, 12, 1108. (t) He, H.;
Liu, W.-B.; Dai, L.-X.; You, S.-L. Angew.Chem., Int. Ed. 2010, 49, 1496.
ꢀ
(9) Allylic etherification: (a) Lopez, F.; Ohmura, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 3426. (b) Shu, C.; Hartwig, J. F. Angew.Chem., Int. Ed.
2004, 43, 4794. (c) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M.
J. Am. Chem. Soc. 2004, 126, 1628. (d) Lyothier, I.; Defieber, C.; Carreira,
E. M. Angew. Chem., Int. Ed. 2006, 45, 6204. (e) Kimura, M.; Uozumi, Y.
J. Org. Chem. 2007, 72, 707. (f) Miyabe, H.; Yoshida, K.; Yamauchi, M.;
Takemoto, Y. J. Org. Chem. 2007, 72, 2148. (g) Ueno, S.; Hartwig, J. F.
Angew.Chem., Int. Ed. 2008, 47.
(10) For a review: (a) Fuchs, P. L.; Braish, T. F. Chem. Rev. 1986, 86, 903.
For selected examples: (b) Trost, B. M.; Organ, M. G.; Odoherty, G. A.
J. Am. Chem. Soc. 1995, 117, 9662. (c) Teall, M.; Oakley, P.; Harrison, T.;
Shaw, D.; Kay, E.; Elliott, J.; Gerhard, U.; Castro, J. L.; Shearman, M.; Ball,
R. G.; Tsou, N. N. Biol. Med. Chem. Lett. 2005, 15, 2685. (d) Peschiulli, A.;
Procuranti, B.; O’Connor, C. J.; Connon, S. J. Nat. Chem. 2010, 2, 380.
(11) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2010, 12, 800.
(3) Selected examples: (a) Trost, B. M.; Krische, M. J.; Radinov, R.;
€
Zanoni, G. J. Am. Chem. Soc. 1996, 118, 6297. (b) Bohme, A.; Gais, H.-J.
Tetrahedron: Asymmetry 1999, 10, 2511. (c) Trost, B. M.; Crawley, M. L.;
Lee, C. B. J. Am. Chem. Soc. 2000, 122, 6120. (d) Vasen, D.; Salzer, A.;
Gerhards, F.; Gais, H.-J.; Bieler, N. H.; Togni, A. Organometallics 2000, 19,
€
€
539. (e) Gais, H.-J.; Bohme, A. J. Org. Chem. 2002, 67, 1153. (f) Lussem,
B. J.; Gais, H.-J. J. Org. Chem. 2004, 69, 4041. (g) Liao, M.; Duan, X.; Liang,
Y. Tetrahedron Lett. 2005, 46, 3469. (h) Tsarev, V. N.; Konkin, S. I.;
Shyryaev, A. A.; Davankov, V. A.; Gavrilov, K. N. Tetrahedron: Asymmetry
2005, 16, 1737. (i) Trost, B. M.; Crawley, M. L.; Lee, C. B. Chem.;Eur. J.
2006, 12, 2171. (j) Overman, L. E.; Roberts, S. W.; Sneddon, H. F. Org. Lett.
2008, 10, 1485.
(12) Ueda, M.; Hartwig, J. F. Org. Lett. 2010, 12, 92.
DOI: 10.1021/jo1006152
r
Published on Web 05/27/2010
J. Org. Chem. 2010, 75, 4615–4618 4615
2010 American Chemical Society