K. O. Cameron et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2943–2947
2947
3. (a) Herranz, R. Med. Res. Rev. 2003, 23, 559; (b) Szewczyk, J. R.; Laudeman, C.
Curr. Top. Med. Chem. 2003, 8, 8837.
5
0
4. (a) Sayegh, A. I.; Reeve, J. R., Jr.; Lampley, S. T.; Hart, B.; Gulley, S.; Esdaile, A. R.;
Sharma, S. K.; Webb, T.; Williams, C. S.; Pruitt, F. J. Am. Vet. Med. Assoc. 1809,
2005, 226; (b) Sayegh, A. I.; Ritter, R. C. Peptides 2003, 24, 237; (c) Moran, T. H.;
Kinzig, K. P. Am. J. Physiol. 2004, 286, G183; (d) Moran, T. H. Physiol. Behav. 2004,
82, 175.
vehicle
-5
0.6 mg/kg
5. (a) Hirst, G. C.; Aquino, C.; Birkemo, L.; Croom, D. K.; Dezube, M.; Dougherty, R.
W., Jr.; Ervin, G. N.; Grizzle, M. K.; Henke, B.; James, M. K.; Johnson, M. F.;
Momtahen, T.; Queen, K. L.; Sherrill, R. G.; Szewczyk, J.; Willson, T. M.; Sugg, E.
E. J. Med. Chem. 1996, 39, 5236; (b) Aquino, C. J.; Armour, D. R.; Berman, J. M.;
Birkemo, L. S.; Carr, R. A.; Croom, D. K.; Dezube, M.; Dougherty, R. W., Jr.; Ervin,
G. N.; Grizzle, M. K.; Head, J. E.; Hirst, G. C.; James, M. K.; Johnson, M. F.; Miller,
L. J.; Queen, K. L.; Rimele, T. J.; Smith, D. N.; Sugg, E. E. J. Med. Chem. 1996, 39,
562; (c) Sugg, E. E.; Birkemo, L.; Gan, L. S.; Tippin, T. K. Pharm. Biotechnol. 1998,
11, 507; (d) Bignon, E.; Bachy, A.; Boigegrain, R.; Brodin, R.; Cottineau, M.;
Gully, D.; Herbert, J. M.; Keane, P.; Labie, C.; Mollimard, J. C.; Olliero, D.; Oury-
Donat, F.; Petereau, C.; Prabonnaud, V.; Rockstroh, M. P.; Schaeffer, P.; Servant,
O.; Thurneyssen, O.; Soubrié, P.; Pascal, M.; Maffrand, J. P.; Le Fur, G. J.
Pharmacol. Exp. Ther. 1999, 289, 742; (e) Zhu, C.; Hansen, A. R.; Bateman, T.;
Chen, Z.; Holt, T. G.; Hubert, J. A.; Karanam, B. V.; Lee, S. J.; Pan, J.; Qian, S.;
Reddy, V. B.; Reitman, M. L.; Strack, A. M.; Tong, V.; Weingarth, D. T.; Wolff, M.
S.; MacNeil, D. J.; Weber, A. E.; Duffy, J. L.; Edmondson, S. D. Bioorg. Med. Chem.
Lett. 2008, 8, 4393.
-10
-15
-20
2 *m*g*/kg
6*m*g*/kg
Figure 3. Weight loss observed after 5 days of oral administration of 10e in a diet-
induced obese rat model as compared to vehicle (25% SDD, ⁄⁄⁄p <0.001).
(14.7 nM) however, they were significantly higher than the portal
and plasma maximal concentrations observed at 6 mg/kg. The lim-
ited time-points used in these challenging pharmacokinetic studies
may in fact have missed Cmax within the intestinal wall. Regardless,
the data suggest that activation of intestinal CCK1R’s are primary
drivers for the weight loss efficacy observed.
6. Elliott, R. L.; Cameron, K. O.; Chin, J. E.; Bartlett, J. A.; Beretta, E. E.; Yue, Chen;
Jardine, P. D. S.; Dubins, J. S.; Gillaspy, M. L.; Hargrove, D. M.; Kalgutkar, A. S.;
LaFlamme, J. A.; Lame, M. E.; Martin, K. A.; Maurer, T. S.; Nardone, N. A.; Oliver,
R. M.; Scott, D. O.; Sun, D.; Swick, A. G.; Trebino, C. E.; Zhang, Y. Bioorg. Med.
Chem. Lett. 2010, 20, 6797.
In summary, we have identified new piperidine amide ‘triggers’
in the triazolobenzodiazepinone series. Optimization of leads
based on SAR and physical properties has led us to the discovery
of compound 10e which demonstrated robust CCK1 receptor agon-
ism as measured by in vitro as well as in vivo studies. Pharmacody-
namic effects were attributed primarily to activation of intestinal
CCK1R’s due to low portal and systemic drug levels and relatively
higher intestinal drug levels measured pre-clinically. Compound
10e successfully completed regulatory safety studies but was sub-
sequently discontinued from further development due to disap-
pointing clinical data observed with our prototype CE-326597.
7. (a) Castillo, E. J.; Delgado-Aros, S.; Camilleri, M.; Burton, D.; Stephans, D.;
O’Connor-Semmes, R.; Walker, A.; Shachoy-Clark, A.; Zinsmeister, A. R. Am. J.
Physiol. Gastrointest. Liver Physiol. 2004, 287, G363; (b) Jordon, J.; Greenway, F.
L.; Leiter, L. A.; Li, Z.; Jacobson, P.; Murphy, K.; Hill, J.; Kler, L.; Aftring, R. P. Clin.
Pharmacol. Ther. 2008, 83, 281; (c) Roses, A. D. Clin. Pharmacol. Ther. 2009, 85,
362.
8. (a) Compounds 4a and 10e were formulated as
a 25 wt % drug:75 wt %
hydroxypropyl methylcellulose acetate succinate-high granular (HPMCAS-
HG) SDD in 0.5% methylcellulose.; (b) Rasenack, N.; Müller, B. W. Pharm. Res.
1894, 2002, 19; (c) Friesen, D. T.; Shanker, R.; Crew, M.; Smithey, D. T.; Curatolo,
W. J.; Nightingale, J. A. S. Mol. Pharm. 2008, 5, 1003; (d) Curatolo, W.;
Nightingale, J. A.; Herbig, S. M. Pharm. Res. 2009, 26, 1419.
9. Henke, B. R.; Willson, T. M.; Sugg, E. E.; Croom, D. K.; Dougherty, R. W., Jr.;
Queen, K. L.; Birkemo, L. S.; Ervin, G. N.; Grizzle, M. K.; Johnson, M. F.; James, M.
K. J. Med. Chem. 1996, 39, 2655.
10. Aquino, C. J.; Armour, D. R.; Berman, J. M.; Birkemo, L. S.; Carr, R. A. E.; Croom,
D. K.; Dezube, M.; Dougherty, R. W., Jr.; Ervin, G. N.; Grizzle, M. K.; Head, J. E.;
Hirst, G. C.; James, M. K.; Johnson, M. F.; Miller, L. J.; Queen, K. L.; Rimele, T. J.;
Smith, D. N.; Sugg, E. E. J. Med. Chem. 1996, 39, 562.
11. Chen, Y.; Cameron, K.; Guzman-Perez, A.; Perry, D.; Li, D.; Gao, H. Biopharm.
Drug Dispos. 2010, 31, 82.
12. Bela, Agai; Agnes, Proszenyak; Gabor, Tarkanyi; Laszlo, Vida; Ferenc, Faigl Eur.
J. Org. Chem. 2004, 17, 3623.
13. Makovec, F.; Bani, M.; Cereda, R.; Christe, R.; Pacini, M. A.; Revel, L.; Rovati, L. C.
Pharmacol. Res. Commun. 1987, 19, 41.
Acknowledgments
We thank Larry Miller for providing the CHO hCCK1R cell line,
Robert Corr for the preparation of library compounds, Robert Dep-
ianta, Ben Hritzko, Dan Virtue, and Sharon Matis for chiral separa-
tion of analogs, and Brenda Ramos, Samuel Bell, and Michael
Gumkowski for providing formulations.
14. All procedures were reviewed and approved by the Institutional Animal Care &
Use Committee.
Supplementary data
15. Stereochemistry of 10e was determined by single crystal X-ray analysis. The
crystal structure has been deposited at the Cambridge Crystallographic Data
Centre and was allocated the following deposition number: CCDC 855714.
16. Anorectic activity of 10e in mice was assessed utilizing an overnight fasting-re-
feeding paradigm. After an overnight fast, mice were orally given increasing
doses of 10e in a SDD formulation and food intake was measured. At the 2-h
time point, 0.2 mg/kg was determined to be the minimally efficacious dose,
significantly inhibiting food intake by 34% (p <0.05) as compared to vehicle-
treated mice. This dose was therefore used to assess gallbladder refilling.
17. Significant decreases in food intake relative to vehicle of 19% and 25% were
observed at 2 and 6 mg/kg, respectively. No gastrointestinal side-effects were
observed.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Berna, M. J.; Jensen, R. T. Curr. Top. Med. Chem. 2007, 7, 1211; (b) Ahren, B.;
Holst, J. J.; Efendic, S. J. Clin. Endocrinol. Metab. 2000, 85, 1043.
2. (a) Little, T. J.; Horowitz, M.; Feinle-Bisset, C. Obes. Rev. 2005, 6, 297; (b) Liddle,
R. A.; Goldfine, I. D.; Rosen, M. S.; Taplitz, R. A.; Williams, J. A. J. Clin. Invest.
1985, 75, 1144.