D. Brevet, O. Hocine, M. Maynadier, A. Gallud, A. Da Silva,
O. Mongin, M. Blanchard-Desce, S. Richeter, B. Loock, P. Maillard,
A. Morere, M. Garcia, L. Raehm and J. O. Durand, Multifunctionalized
mesoporous silica nanoparticles for the in vitro treatment of retinoblas-
toma: drug delivery, one and two-photon photodynamic therapy,
Int. J. Pharm., 2012, 432, 99–104.
O. Mongin, P.-A. Chollet and M. Blanchard-Desce, Optical limiting in
the red-NIR range with soluble two-photon absorbing molecules, Chem.
Phys. Lett., 2003, 379, 74–80; (g) O. Mongin, L. Porrès, M. Charlot,
C. Katan and M. Blanchard-Desce, Synthesis, fluorescence, and two-
photon absorption of a series of elongated rodlike and banana-shaped
quadrupolar fluorophores: a comprehensive study of structure-property
relationships, Chem.–Eur. J., 2007, 13, 1481–1498; (h) O. Mongin,
A. Pla-Quintana, F. Terenziani, D. Drouin, C. Le Droumaguet,
A.-M. Caminade, J.-P. Majoral and M. Blanchard-Desce, Organic nano-
dots for multiphotonics: synthesis and photophysical studies, New
J. Chem., 2007, 31, 1354–1367; (i) O. Mongin, C. Rouxel, A.-C. Robin,
A. Pla-Quintana, T. Rama Krishna, G. Recher, F. Tiaho,
A.-M. Caminade, J.-P. Majoral and M. Blanchard-Desce, Brilliant
organic nanodots: novel nano-objects for bionanophotonics, Proc. SPIE,
2008, 7040, 704006; ( j) M. Guo, O. Varnavski, A. Narayanan,
O. Mongin, J.-P. Majoral, M. Blanchard-Desce and T. Goodson, Investi-
gations of energy migration in an organic dendrimer macromolecule for
sensory signal amplification, J. Phys. Chem. A, 2009, 113, 4763–4771;
(k) O. Mongin, C. Rouxel, J.-M. Vabre, Y. Mir, A. Pla-Quintana, Y. Wei,
A.-M. Caminade, J.-P. Majoral and M. Blanchard-Desce, Customized
multiphotonics nanotools for bioapplications: soft organic nanodots as an
eco-friendly alternative to quantum dots, Proc. SPIE, 2009, 7403,
740303; (l) A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman,
J. E. Haley, M. K. Douglas, A. R. Burke, J. L. Flikkema and
T. M. Cooper, Relation between two-photon absorption and dipolar prop-
erties in a series of fluorenyl-based chromophores with electron donating
or electron withdrawing substituents, J. Phys. Chem. A, 2011, 115,
4255–4262.
13 (a) L. Donato, A. Mourot, C. M. Davenport, C. Herbivo, D. Warther,
J. Léonard, F. Bolze, J.-F. Nicoud, R. H. Kramer, M. Goeldner and
A. Specht, Water-soluble, donor–acceptor biphenyl derivatives in the
2-(o-Nitrophenyl)propyl series: highly efficient two-photon uncaging of
the neurotransmitter γ-aminobutyric acid at λ = 800 nm, Angew. Chem.,
Int. Ed., 2012, 51, 1840–1843; (b) D. Warther, S. Gug, A. Specht,
F. Bolze, J. F. Nicoud, A. Mourot and M. Goeldner, Two-photon unca-
ging: new prospects in neuroscience and cellular biology, Bioorg. Med.
Chem., 2010, 18, 7753–7758; (c) G. C. R. Ellis-Davies, Two-photon
microscopy for chemical neuroscience, ACS Chem. Neurosci., 2011, 2,
185–197; (d) G. C. R. Ellis-Davies, Caged compounds: photorelease
technology for control of cellular chemistry and physiology, Nat.
Methods, 2007, 4, 619–628.
14 (a) D. A. Parthenopoulos and P. M. Rentzepis, Three-dimensional optical
storage memory, Science, 1989, 245, 843–845; (b) C. C. Corredor,
Z.-L. Huang, K. D. Belfield, A. R. Morales and M. V. Bondar, Photochro-
mic polymer composites for two-photon 3D optical data storage, Chem.
Mater., 2007, 19, 5165–5173.
15 (a) P.-A. Bouit, G. Wetzel, G. Berginc, B. Loiseaux, L. Toupet,
P. Feneyrou, Y. Bretonnière, K. Kamada, O. Maury and C. Andraud, Near
IR nonlinear absorbing chromophores with optical limiting properties at
telecommunication wavelengths, Chem. Mater., 2007, 19, 5325–5335;
(b) Q. Zheng, G. S. He and P. N. Prasad, A novel near IR two-photon
absorbing chromophore: optical limiting and stabilization performances
at an optical communication wavelength, Chem. Phys. Lett., 2009, 475,
250–255; (c) G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt,
J. C. Bhatt, R. McKellar and A. G. Dillard, Two-photon absorption and
optical-limiting properties of novel organic compounds, Opt. Lett., 1995,
20, 435–437; (d) J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu,
H. Röckel, S. R. Marder and J. W. Perry, Two-photon absorption and
broadband optical limiting with bis-donor stilbenes, Opt. Lett., 1997, 22,
1843–1845; (e) M. Charlot, N. Izard, O. Mongin, D. Riehl and
M. Blanchard-Desce, Optical limiting with soluble two-photon absorbing
quadrupoles: structure-property relationships, Chem. Phys. Lett., 2006,
417, 297–302; (f) G. Lemercier, J.-C. Mulatier, C. Martineau,
R. Anémian, C. Andraud, I. Wang, O. Stéphan, N. Amari and P. Baldeck,
Two-photon absorption: from optical power limiting to 3D microfabrica-
tion, C. R. Chim., 2005, 8, 1308–1316.
16 (a) S. Maruo, O. Nakamura and S. Kawata, Three-dimensional microfab-
rication with two-photon-absorbed photopolymerization, Opt. Lett., 1997,
22, 132–134; (b) S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Finer
features for functional microdevices, Nature, 2001, 412, 697–698;
(c) W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack,
C. K. Ober, J. W. Perry and S. R. Marder, An efficient two-photon-gener-
ated photoacid applied to positive-tone 3D microfabrication, Science,
2002, 296, 1106–1109; (d) F. Claeyssens, E. A. Hasan,
A. Gaidukeviciute, D. S. Achilleos, A. Ranella, C. Reinhardt,
A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov
and M. Farsari, Three-dimensional biodegradable structures fabricated by
two-photon polymerization, Langmuir, 2009, 25, 3219–3223;
(e) I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin,
N. Bityurin, M. Vamvakaki and M. Farsari, Diffusion-assisted high-resol-
ution direct femtosecond laser writing, ACS Nano, 2012, 6, 2302–2311.
17 (a) L. Ventelon, L. Moreaux, J. Mertz and M. Blanchard-Desce, New
quadrupolar fluorophores with high two-photon excited fluorescence,
Chem. Commun., 1999, 2055–2056; (b) O. Mongin, L. Porrès,
L. Moreaux, J. Mertz and M. Blanchard-Desce, Synthesis and photo-
physical propertiesof new conjugated fluorophores designed for two-
photon-excited fluorescence, Org. Lett., 2002, 4, 719–722; (c) L. Porrès,
O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz and M. Blanchard-
Desce, Enhanced two-photon absorption with novel octupolar propeller-
shaped fluorophores derived from triphenylamine, Org. Lett., 2004, 6,
47–50; (d) C. Le Droumaguet, O. Mongin, M. H. V. Werts and
M. Blanchard-Desce, Towards “smart” multiphoton fluorophores:
strongly solvatochromic probes for two-photon sensing of micropolarity,
Chem. Commun., 2005, 2802–2804; (e) M. H. V. Werts, S. Gmouh,
O. Mongin, T. Pons and M. Blanchard-Desce, Strong modulation of two-
photon excited fluorescence of quadripolar dyes by (De)protonation,
J. Am. Chem. Soc., 2004, 126, 16294–16295; (f) M. G. Silly, L. Porrès,
18 (a) C. Herbivo, A. Comel, G. Kirsch and M. M. M. Raposo, Synthesis of
5-aryl-5′-formyl-2,2′-bithiophenes as new precursors for nonlinear optical
(NLO) materials, Tetrahedron, 2009, 65, 2079–2086; (b) M. M. M. Raposo,
M. C. R. Castro, M. Belsley and A. M. C. Fonseca, Push pull bithiophene
azo-chromophores bearing thiazole and benzothiazole acceptor moieties:
Synthesis and evaluation of their redox and nonlinear optical properties,
Dyes Pigm., 2011, 91, 454–465.
19 (a) Y.-S. Yen, W.-T. Chen, C.-Y. Hsu, H.-H. Chou, J. T. Lin and
M.-C. P. Yeh, Arylamine-based dyes for p-type dye-sensitized solar cells,
Org. Lett., 2011, 13, 4930–4933; (b) F. Zhang, Y.-h. Luo, J.-s. Song,
X.-z. Guo, W.-l. Liu, C.-p. Ma, Y. Huang, M.-f. Ge, Z. Bo and
Q.-B. Meng, Triphenylamine-based dyes for dye-sensitized solar cells,
Dyes Pigm., 2009, 81, 224–230; (c) E. Ripaud, Y. Olivier, P. Leriche,
J. Cornil and J. Roncali, Polarizability and internal charge transfer in thio-
phene-triphenylamine hybrid pi-conjugated systems, J. Phys. Chem. B,
2011, 115, 9379–9386; (d) P. Leriche, P. Frere, A. Cravino, O. Aleveque
and J. Roncali, Molecular engineering of the internal charge transfer in
thiophene-triphenylamine hybrid pi-conjugated systems, J. Org. Chem.,
2007, 72, 8332–8336; (e) A. Leliège, P. Blanchard, T. o. Rousseau and
J. Roncali, Triphenylamine/tetracyanobutadiene-based D–A–D π-conju-
gated systems as molecular donors for organic solar cells, Org. Lett.,
2011, 13, 3098–3101; (f) Q. Bricaud, A. Cravino, P. Leriche and
J. Roncali, Terthiophene-cyanovinylene π-conjugated polymers as donor
material for organic solar cells, Synth. Met., 2009, 159, 2534–2538.
20 (a) T. Narita, M. Takase, T. Nishinaga, M. Iyoda, K. Kamada and
K. Ohta, Star-shaped oligothiophenes with unique photophysical proper-
ties and nanostructured polymorphs, Chem.–Eur. J., 2010, 16, 12108–
12113; (b) S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler,
R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu,
S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze and
J. R. Reynolds, Donor–acceptor–donor-based π-conjugated oligomers for
nonlinear optics and near-IR emission, Chem. Mater., 2011, 23,
3805–3817.
21 X. J. Feng, P. L. Wu, H. L. Tam, K. F. Li, M. S. Wong and K. W. Cheah,
Fluorene-based π-conjugated oligomers for efficient three-photon excited
photoluminescence and lasing, Chem.–Eur. J., 2009, 15, 11681–11691.
22 V. Alain, L. Thouin, M. Blanchard-Desce, U. Gubler, C. Bosshard,
P. Günter, J. Muller, A. Fort and M. Barzoukas, Molecular engineering of
push–pull phenylpolyenes for nonlinear optics: improved solubility, stab-
ility, and nonlinearities, Adv. Mater., 1999, 11, 1210–1214.
23 (a) M. Blanchard-Desce, V. Alain, L. Midrier, R. Wortmann, S. Lebus,
C. Glania, P. Krämer, A. Fort, J. Muller and M. Barzoukas, Intramole-
cular charge transfer and enhanced quadratic optical non-linearities in
push pull polyenes, J. Photochem. Photobiol., A, 1997, 105, 115–121;
(b) W. Akemann, D. Laage, P. Plaza, M. M. Martin and M. Blanchard-
Desce, Photoinduced Intramolecular charge transfer in push–pull poly-
enes: effects of solvation, electron-donor group, and polyenic chain
This journal is © The Royal Society of Chemistry and Owner Societies 2012
Photochem. Photobiol. Sci., 2012, 11, 1756–1766 | 1765