Brief Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 14 5351
1-Imidazol-1-ylmethylxanthen-9-one (10). Starting from 28,20
0.11 g (42%) of 10 were obtained (toluene/acetone 3:2), mp
169-170 °C. 1H NMR: δ 5.45 (s, 2H, CH2-imi), 6.85-8.15 (m,
10H, Arþimi). 13C NMR: δ 49.13, 114.13, 117.36, 121.21,
121.97, 122.56, 125.87, 126.60, 127.45, 129.89, 131.76, 131.98,
138.89, 139.76, 157.34, 157.65, 186.69. ES-MS m/s: 277 (MHþ).
1-(4-nitro-2-phenoxybenzyl)-1H-imidazole (11). Starting from
35, 0.18 g (62%) of 11 were obtained (toluene/acetone 4:1), mp
107-110 °C. 1H NMR: δ 5.35 (s, 2H, CH2-imi), 7.00-7.90 (m,
11H, Arþimi). 13C NMR: δ 45.85, 112.45, 116.53, 117.11,
121.34, 122.65, 126.02, 128.11, 129.78, 132.56, 139.91, 144.89,
155.98, 157.87. ES-MS m/s: 296 (MHþ).
1-(4-Nitro-2-phenylsulfanylbenzyl)-1H-imidazole (12). Start-
ing from 36, 0.21 g (71%) of 12 were obtained (toluene/acetone
3:2), mp 115-116 °C. 1H NMR: δ 5.30 (s, 2H, CH2-imi), 6.90-
8.00 (m, 11H, Arþimi). 13C NMR: δ 48.21, 120.98, 122.65,
126.02, 126.12, 127.04, 129.21, 130.70, 130.98, 131.76, 133.54,
139.76, 145.89, 146.43. ES-MS m/s: 312 (MHþ).
B. V. Highly Potent First Examples of Dual Aromatase-Steroid
Sulfatase Inhibitors based on a Biphenyl Template (dagger).
J. Med. Chem. 2010, 53, 2155–2170.
(12) Gobbi, S.; Cavalli, A.; Bisi, A.; Recanatini, M. From nonsteroidal
aromatase inhibitors to multifunctional drug candidates: classic
and innovative strategies for the treatment of breast cancer. Curr.
Top. Med. Chem. 2008, 8, 869–887.
(13) Recanatini, M.; Bisi, A.; Cavalli, A.; Belluti, F.; Gobbi, S.; Rampa,
A.; Valenti, P.; Palzer, M.; Palusczak, A.; Hartmann, R. W. A new
class of nonsteroidal aromatase inhibitors: design and synthesis of
chromone and xanthone derivatives and inhibition of the P450
enzymes aromatase and 17alpha-hydroxylase/C17,20-lyase.
J. Med. Chem. 2001, 44, 672–680.
(14) Cavalli, A.; Bisi, A.; Bertucci, C.; Rosini, C.; Paluszcak, A.; Gobbi,
S.; Giorgio, E.; Rampa, A.; Belluti, F.; Piazzi, L.; Valenti, P.;
Hartmann, R. W.; Recanatini, M. Enantioselective Nonsteroidal
Aromatase Inhibitors Identified through a Multidisciplinary Medi-
cinal Chemistry Approach. J. Med. Chem. 2005, 48, 7282–7289.
(15) Gobbi, S.; Cavalli, A.; Rampa, A.; Belluti, F.; Piazzi, L.; Paluszcak,
A.; Hartmann, R. W.; Recanatini, M.; Bisi, A. Lead optimization
providing a series of flavone derivatives as potent nonsteroidal
inhibitors of the cytochrome P450 aromatase enzyme. J. Med.
Chem. 2006, 49, 4777–4780.
(16) Gobbi, S.; Cavalli, A.; Negri, M.; Schewe, K. E.; Belluti, F.; Piazzi,
L.; Hartmann, R. W.; Recanatini, M.; Bisi, A. Imidazolylmethyl-
benzophenones as highly potent aromatase inhibitors. J. Med.
Chem. 2007, 50, 3420–3422.
1-(2-phenoxybenzyl)-1H-imidazole (13). Starting from 38,
0.15 g (63%) of 13 were obtained (toluene/acetone 3:2) as an
oil (lit.29 mp hydrochloric salt 144-145 °C). 1H NMR: δ 5.15 (s,
2H, CH2-imi), 6.98-7.60 (m, 12H, Arþimi). 13C NMR: δ 45.67,
117.21, 117.39, 121.76, 121.90, 122.87, 125.76, 126.13, 126.54,
128.43, 128.98, 139.53, 156.23, 156.78. ES-MS m/s: 251 (MHþ).
(17) Pinto, M. M. M.; Sousa, M. E.; Nascimento, M. S. J. Xanthone
derivatives: new insights in biological activities. Curr. Med. Chem.
2005, 12, 2517–2538.
(18) Na, Y. Recent cancer drug development with xanthone structures.
J. Pharm. Pharmacol. 2009, 61, 707–712.
Acknowledgment. This work was supported by grants from
the University of Bologna.
(19) Da Re, P.; Valenti, P.; Primofiore, G.; Cima, L. Structure-activity
relationships in centrally stimulating xanthone derivatives. Part
VII. Some new basic xanthone derivatives. Chim. Ther. 1973, 1, 60–
64.
(20) Rewcastle, G. W.; Atwell, G. J.; Baguley, B. C.; Calveley, S. B.;
Denny, W. A. Potential antitumor agents. 58. Synthesis and
Structure-activity relationships of substituted xanthenone-4-
acetic acids active against the colon 38 tumor in vivo. J. Med.
Chem. 1989, 32, 793–799.
Supporting Information Available: Experimental and spectro-
scopic details of intermediate compounds 14, 15, 22, 29-38, 40,
41. This material is available free of charge via the Internet at
References
(21) Rampa, A.; Chiarini, A.; Bisi, A.; Budriesi, R.; Valenti, P. 4-
heterotricyclic substituted 1,4 dihydropyridines with a potent
selective bradycardic effect. Arzneim. Forsch. 1991, 41, 705–709.
(22) Rewcastle, G. W.; Atwell, G. J.; Palmer, B. D.; Boyd, P. D. W.;
Baguley, B. C.; Denny, W. A. Potential antitumor agents. 62.
Structure-activity relationships for tricyclic compounds related
to the colon tumor active drug 9-oxo-9H-xanthene-4-acetic acid.
J. Med. Chem. 1991, 34, 491–496.
(23) Atwell, G. J.; Rewcastle, G. W.; Baguley, B. C.; Denny, W. A.
Potential antitumor agents. 60. Relationships between structure
and in vivo colon 38 activity for 5-substituted 9-oxoxanthene-4-
acetic acids. J. Med. Chem. 1990, 33, 1375–1379.
(24) Thompson, E. A., Jr.; Siiteri, P. K. Utilization of oxygen and
reduced nicotinamide adenine dinucleotide phosphate by human
placental microsomes during aromatization of androstenedione.
J. Biol. Chem. 1974, 249, 5364–5372.
(25) Hutschenreuter, T. U.; Ehmer, P. B.; Hartmann, R. W. Synthesis of
hydroxy derivatives of highly potent nonsteroidal CYP17 inhibi-
tors as potential metabolites and evaluation of their activity by a
non cellular assay using recombinant human enzyme. J. Enzyme
Inhib. 2004, 19, 17–32.
(1) Cancer Facts & Figures 2009; American Cancer Society: Atlanta, GA,
2010.
(2) Sasano, H.; Miki, Y.; Nagasaki, S.; Suzuki, T. In situ estrogen
production and its regulation in human breast carcinoma: from
endocrinology to intracrinology. Pathol. Int. 2009, 59, 777–789.
(3) Santen, R. J.; Brodie, H.; Simpson, E. R.; Siiteri, P. K.; Brodie, A.
History of aromatase: saga of an important biological mediator
and therapeutic target. Endocr. Rev. 2009, 30, 343–375.
(4) Wong, Z. W.; Ellis, M. J. First-line endocrine treatment of breast
cancer: aromatase inhibitor or antioestrogen? Br. J. Cancer 2004,
90, 20–25.
(5) Needleman, S. J.; Tobias, J. S. Aromatase inhibitors in early
hormone receptor-positive breast cancer: what is the optimal
initiation time for the maximum benefit? Drugs 2008, 68, 1–15.
(6) Yahiaoui, S.; Fagnere, C.; Pouget, C.; Buxeraud, J.; Chulia, A. J.
New 7,8-benzoflavanones as potent aromatase inhibitors: synth-
esis and biological evaluation. Bioorg. Med. Chem. 2008, 16, 1474–
1480.
(7) Jackson, T.; Woo, L. W.; Trusselle, M. N.; Purohit, A.; Reed, M. J.;
Potter, B. V. Nonsteroidal aromatase inhibitors based on a biphe-
nyl scaffold: synthesis, in vitro SAR, and molecular modelling.
ChemMedChem 2008, 3, 603–618.
(26) Njar, V. C.; Brodie, A. M. Comprehensive pharmacology
and clinical efficacy of aromatase inhibitors. Drugs 1999, 58,
233–255.
ꢀ ꢀ
(8) Leze, M. P.; Palusczak, A.; Hartmann, R. W.; Le Borgne, M.
Synthesis of 6- or 4-functionalized indoles via a reductive cycliza-
tion approach and evaluation as aromatase inhibitors. Bioorg.
Med. Chem. Lett. 2008, 18, 4713–4715.
(27) (a) Harris, K. A.; Weinberg, V.; Bok, R. A.; Kakefuda, M.; Small,
E. J. Low dose ketoconazole with replacement doses of hydrocortisone
in patients with progressive androgen independent prostate cancer.
J. Urol. 2002, 168, 542–545. (b) Eklund, J.; Kozloff, M.; Vlamakis, J.;
Starr, A.; Mariott, M.; Gallot, L.; Jovanovic, B.; Schilder, L.; Robin, E.;
Pins, M.; Bergan, R. C. Phase II study of mitoxantrone and ketocona-
zole for hormone-refractory prostate cancer. Cancer 2006, 106, 2459–
2465.
(28) Balunas, M. J.; Su, B.; Brueggemeier, R. W.; Kinghorn, A. D.
Xanthones from the botanical dietary supplement mangosteen
(Garcinia mangostana) with aromatase inhibitory activity. J. Nat.
Prod. 2008, 71, 1161–1166.
(9) Balunas, M. J.; Su, B.; Riswan, S.; Fong, H. H.; Brueggemeier,
R. W.; Pezzuto, J. M.; Kinghorn, A. D. Isolation and Character-
ization of Aromatase Inhibitors from Brassaiopsis glomerulata
(Araliaceae). Phytochem. Lett. 2009, 2, 29–33.
(10) Bubert, C.; Woo, L. W.; Sutcliffe, O. B.; Mahon, M. F.; Chander,
S. K.; Purohit, A.; Reed, M. J.; Potter, B. V. Synthesis of aromatase
inhibitors and dual aromatase steroid sulfatase inhibitors by link-
ing an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzo-
nitrile: SAR, crystal structures, in vitro and in vivo activities.
ChemMedChem 2008, 3, 1708–1730.
(11) Woo, L. W.; Jackson, T.; Putey, A.; Cozier, G.; Leonard, P.;
Acharya, K. R.; Chander, S. K.; Purohit, A.; Reed, M. J.; Potter,
(29) Strehlke, P.; Kessler, H. J.; Redmann, U. U.S. Patent 4006243,
1977.