SYNTHESIS AND KINETIC STUDY OF HYDROLYSIS OF DI-2-CHLOROANILINE PHOSPHATE ESTER
131
Table V Solvent Effect Rate Data for the Hydrolysis of
Di-2-chloroaniline Phosphate Ester
subjected to the positive effect of the ionic strength.
The bimolecular nature of hydrolysis was supported
by different parameters such as Hammett, Zucker–
Hammett, Bunnett, Bunnett—Olsen, and Arrhenius.
The bimolecular hydrolysis with P–N bond fission of
the conjugate acid species was proposed. The SN (P)
mechanism was suggested for the hydrolysis via con-
jugate acid species.
HCl
(mol dm−3
% of dioxane
(v/v)
ke × 103
)
(min−1
)
3 + log ke
2.0
2.0
2.0
20.0
30.0
40.0
19.0
21.5
24.3
1.28
1.33
1.38
2
The authors are thankful to Prof. (Mrs.) Rama Pande, Head,
School of Studies in Chemistry, Pt. Ravishankar Shukla
University, Raipur, India, for providing research facilities.
slow proton transfer with a nucleophilic attack of the
water molecule. See Table IV.
Effect of Temperature
BIBLIOGRAPHY
Arrhenius parameters [21] (figure not shown) deter-
mined for the hydrolysis at 3.0 mol dm−3 HCl are
activation energy (Ea) = 13.7 kcal mol−1, frequency
factor (A) = 1.63 × 10−5 s−1, and entropy (−ꢁS=) =
28.9 e.u. These values indicate the bimolecular nature
of the hydrolytic reaction.
1. Vincent, J. B.; Crowder, M. W.; Averill, B. A. Trends
Biochem Sci 1992, 17, 105.
2. Cox, J. R.; Ramsay, O. B. Chem Rev 1964, 64, 317–352.
3. Breuice, T. C.; Benkovic, S. Bioorganic Mechanism; W.
A. Benjamin, Inc.: New York, 1966; Vol. 2, p. 231.
4. Ketelaar, J. A. A.; Gersmann, H. R. Recl Trav Chim
Pays-Bas1958, 71, 973–981.
5. Moss, R. A.; Gong, P. K. Langmuir 2000, 16, 8551–
8554.
6. Pope, C. S.; Karanth; Liu, S. Environ Toxicol Pharmacol
2005, 19, 433.
7. Consiglio, E.; Menguz, A.; Testai, E. Toxicol Appl Phar-
macol 2005, 205, 237.
8. Moss, R. A.; Gong, P. K. Langmuir 2000, 16, 8551.
9. Paul, M. Addi Tech 2004, 4, 10, 187–192.
10. Moss, R. A.; Morales. R. J Am Chem Soc 2001, 123,
7457–7456.
11. Cates, I. A.; Johnes, T. E. J Pharm Soc 1964, 69, 531.
12. Holmstedt, B. J Pharm Rev 1959, 11, 567–688.
13. Rudert, P. J. J Chem Soc A 1983, 1 323.
14. Allen, R. J. L. J Biochem 1940, 34, 858.
15. Lefler, J. E.; Grunwald, E. The Rates and Equilibria of
Organic Reaction; Wiley: New York, 1963; p. 286.
16. Branard, P. W. C.; Bunton, C. A.; Kellermann, D.;
Mhala, M. M.; Vernon, C.A.; Welch, V. A. J Chem Soc
B 1968, 2, 229.
Effect of Solvent
Table V shows that the rate constant values gradually
increases with the gradual addition of dioxane. Diox-
ane is regarded as a polar aprotic solvent. The effect of
solvent on the rate of hydrolysis indicates the transition
state in which charge is dispersed. This is in accordance
with Chanley’s observation [22].
A comparative kinetic study of the acid-catalyzed
hydrolysis of di-2-chloroaniline phosphate ester with
other diesters, which also give a linear relation between
rates and hydrogen ion (H+) concentration in moder-
ately acid solution and resemble simple esters in be-
havior, helps in presuming a bimolecular nucleophilic
attack of water involving P–N bond fission (data not
shown). Thus, the acid-catalyzed hydrolysis of di-2-
chloroaniline phosphate ester involves the bimolecu-
lar attack of water on phosphorous of conjugate acid
species formed by fast preequilibrium proton transfer.
17. Zucker, L.; Hammett, L. P. J Am Chem Soc 1939, 61,
2791.
18. Hammett, L. P. Physical Organic Chemistry; McGraw-
Hill: London, 1940; p. 335.
CONCLUSION
19. Bunnett, J. F. J Am Chem Soc 1961, 83, 4982.
20. Bunnett, J. F.; Olsen. F. F. Can J Chem 1966, 44, 1917.
21. Arrhenius. S. J Phys Chem 1889, 4, 226.
22. Chanley, J. D.; Feageson. E. J. J Am Chem Soc 1958,
80, 2686.
Di-2-chloroaniline phosphate ester in 0.5–7.0 mol
dm−3 HCl was found to hydrolyze via neutral and con-
jugate acid species. The acid-catalyzed hydrolysis is
International Journal of Chemical Kinetics DOI 10.1002/kin