Angewandte
Chemie
[4] a) M. A. Baldo, D. F. OꢁBrien, Y. You, A. Shoustikov, S. Sibley,
spectrum exhibited component peaks at l = 489 and 548 nm,
corresponding to emission from 2 and 5, respectively (see
Figure 5a inset).
The hext for OLEDs is generally expressed by Equa-
tion (1):
M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151 – 154;
b) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson,
Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi,
P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem.
hext ¼ hint hout ¼ g hST FPL hout
ð1Þ
[5] a) C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J.
[6] a) S. Y. Lee, T. Yasuda, H. Nomura, C. Adachi, Appl. Phys. Lett.
2012, 101, 093306; b) A. Endo, K. Sato, K. Yoshimura, T. Kai, A.
083302; c) K. Sato, K. Shizu, K. Yoshimura, A. Kawada, H.
Miyazaki, C. Adachi, Phys. Rev. Lett. 2013, 110, 247401; d) H.
where, hint is the internal EL quantum efficiency, hout is the
light out-coupling efficiency (typically around 20%, which is
derived from 1ꢀ(1ꢀ1/n2)1/2, where n is the refractive index of
the organic layers),[18] g is the charge balance factor (ideally g
ꢂ 1 if holes and electrons are fully balanced and recombine to
generate excitons), hST is the fraction of radiative excitons
(hST = 0.25 for conventional fluorescent emitters, according to
the classical spin degeneracy statistics of 1:3 for singlet-to-
triplet excitons), and FPL is the quantum yield of the emitting
layer. Considering the measured FPL values of 1–5 (see
Table 1), greatly enhanced hST efficiencies of 72–98% are
estimated for devices A–E. Note, the maximum hST of 2
(98%) is nearly four times higher than the 25% limit of spin
statistical ratio for conventional fluorescent materials.
[7] J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda, C. Adachi, J.
[8] a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi,
[9] a) Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C.
Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V.
[10] a) G. Mꢄhes, H. Nomura, Q. Zhang, T. Nakagawa, C. Adachi,
C.-J. Lin, C.-H. Cheng, M.-R. Tseng, T. Yasuda, C. Adachi,
[11] a) J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young,
T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F.
8293 – 8301; c) H. Yersin, A. F. Rausch, R. Czerwieniec, T.
In conclusion, efficient exciton-harvesting through spin
upconversion from non-radiative T1 to radiative S1 states has
been realized, using butterfly-shaped benzophenone deriva-
tives. Our results demonstrate that the judicious molecular
design of benzophenone based on D-A-D frameworks is valid
for the production of organic luminophores exhibiting highly
efficient full-color TADF emissions. OLEDs employing the
benzophenone derivatives as emitters have achieved max-
imum external quantum efficiencies of up to 14.3%, which far
exceed the theoretical limit for conventional fluorescence
OLEDs. These purely organic luminophores do not require
expensive precious metals, in contrast to phosphorescent
emitters, and will therefore benefit large-area applications.
Continued exploration of similar materials offers a viable
route for producing efficient and stable full-color TADF
luminophores for future display and lighting applications.
and references therein; b) T. Tsutsui, C. Adachi, S. Saito in
Photochemical Processes in Organized Molecular Systems (Ed.:
K. Honda), Elsevier, Amsterdam, 1991, pp. 437 – 450.
[13] a) M. W. Wolf, K. D. Legg, R. E. Brown, L. A. Singer, J. H.
Aloꢅse, C. Ruckebusch, L. Blanchet, J. Rꢄhaut, G. Buntinx, J.-P.
Received: March 4, 2014
Published online: && &&, &&&&
Keywords: benzophenone · donor–acceptor systems ·
.
organic light-emitting diodes · organic semiconductors ·
photochemistry
[14] N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern Molecular
Photochemistry of Organic Molecules, University Science Books,
Sausalito, 2010.
[15] a) Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, C.
Zhao, H. Xu, J. Chen, Z. Deng, D. Ma, Q. Li, P. Yan, Chem. Eur.
[16] a) Y. Liu, S. Chen, J. W. Y. Lam, P. Lu, R. T. K. Kwok, F. Mahtab,
b) C. Y. K. Chan, Z. Zhao, J. W. Y. Lam, J. Liu, S. Chen, P. Lu, F.
Mahtab, X. Chen, H. H. Y. Sung, H. S. Kwok, Y. Ma, I. D.
[1] a) Organic Light-Emitting Devices: Synthesis Properties and
Applications (Eds.: K. Mꢃllen, U. Scherf), Wiley-VCH, Wein-
heim, 2006; b) Highly Efficient OLEDs with Phosphorescent
Materials (Ed.: H. Yersin), Wiley-VCH, Weinheim, 2008.
[2] For recent Reviews, see: a) J. Chan, S. C. Dodani, C. J. Chang,
[3] a) B. W. DꢁAndrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585 –
1595; b) M. C. Gather, A. Kçhnen, K. Meerholz, Adv. Mater.
Angew. Chem. Int. Ed. 2014, 53, 1 – 7
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
These are not the final page numbers!