5048 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 13
Liu et al.
TrkC (70%) (Figure 4a) but not by TrkA or by IGF-1R
(Figure 4b,c).
(7) Feng, Y.; Wang, Z.; Jin, S.; Burgess, K. SNAr cyclizations to form
cyclic peptidomimetics of β-turns. J. Am. Chem. Soc. 1998, 120,
10768–10769.
There are relatively few small molecule ligands for the
neurotrophin receptors.8,20-26 One of the earliest, a com-
pound we call D3 was designed to mimic putative β-turn
hot-spots in the nerve growth factor (NGF).6,7,27 In vitro and
in vivo tests on D3 indicate this is a partial TrkA agonist, that
has no significant binding to the other Trk receptors. This
compound shows promise for the treatment of stroke and
glaucoma. Whereas similar compounds from our laboratories
have been shown to be agonists or partial agonists for the
TrkC receptor (the one that has greatest affinity for NT-
3),18,28 this paper demonstrates a molecule that contains not
one but two β-turn mimics at an optimized separation can
serve as a TrkC antagonist. The most active of the molecules 6
(ie 6dh, the one from 4d and 4h) contains two DKPs with side
chains from Glu and Lys (EK); this mimics the sequence
DEKQ corresponding to murine NGF and not NT-3, but the
molecule was active on TrkC and not on TrkA. The 92-95
turn region of NT-3 (human or mouse) contains the ENNK
motif. Consequently, it is possible that this compound mimics
the i and i þ 3 residues of this turn rather than the i þ 1 and i þ
2 regions.
(8) Maliartchouk, S.; Feng, Y.; Ivanisevic, L.; Debeir, T.; Cuello,
A. C.; Burgess, K.; Saragovi, H. U. A designed peptidomimetic
agonistic ligand of TrkA nerve growth factor receptors. Mol.
Pharmacol. 2000, 57, 385–391.
(9) Brahimi, F.; Malakhov, A.; Lee, H. B.; Pattarawarapan, M.;
Ivanisevic, L.; Burgess, K.; Saragovi, H. U. A peptidomimetic of
NT-3 acts as a TrkC antagonist. Peptides 2009, 30, 1833–1839.
(10) Pattarawarapan, M.; Reyes, S.; Xia, Z.; Zaccaro, M. C.; Saragovi,
H. U.; Burgess, K. Selective formation of homo- and heterobiva-
lent peptidomimetics. J. Med. Chem. 2003, 46, 3565–3567.
(11) Brahimi, F.; Liu, J.; Malakhov, A.; Chowdhury, S.; Purisima, E.;
Ivanisevic, L.; Caron, A.; Burgess, K.; Saragovi, H. Dimerization
of a monovalent small molecule ligand changes a TrkA receptor
agonist into an antagonist: implications for conformational
changes. 2010, submitted for publication.
(12) Chen, D.; Brahimi, F.; Angell, Y.; Li, Y.-C.; Moscowicz, J.;
Saragovi, H. U.; Burgess, K. Bivalent peptidomimetic ligands of
TrkC are biased agonists, selectively induce neuritogenesis, or
potentiate neurotrophin-3 trophic signals. ACS Chem. Biol. 2009,
4, 769–781.
(13) Angell, Y.; Chen, D.; Brahimi, F.; Saragovi, H. U.; Burgess, K. A
combinatorial method for solution-phase synthesis of labeled
bivalent β-turn mimics. J. Am. Chem. Soc. 2008, 130, 556–565.
(14) Martins, M. B.; Carvalho, I. Diketopiperazines: Biological activity
and synthesis. Tetrahedron 2007, 63, 9923–9932.
(15) Gerona-Navarro, G.; Bonache, M. A.; Herranz, R.; Garcia-Lopez,
M. T.; Gonzalez-Muniz, R. Entry to new conformationally con-
strained amino acids. First synthesis of 3-unsubstituted 4-alkyl-4-
carboxy-2-azetidinone derivatives via an intramolecular NR-CR-cycli-
zation strategy. J. Org. Chem. 2001, 66, 3538–3547.
(16) Bohn Rhoden, C. R.; Westermann, B.; Wessjohann, L. A. One-pot
multicomponent synthesis of n-substituted tryptophan-derived
diketopiperazines. Synthesis 2008, 2077–2082.
(17) Mehta, A.; Jaouhari, R.; Benson, T. J.; Douglas, K. T. Improved
efficiency and selectivity in peptide synthesis:use of triethylsilane as
a carbocation scavenger in deprotection of tert-butyl esters and
tert-butoxycarbonyl-protected sites. Tetrahedron Lett. 1992, 33,
5441–5444.
(18) Zaccaro, M. C.; Lee, B. H.; Pattarawarapan, M.; Xia, Z.; Caron,
A.; L’Heureux, P.-J.; Bengio, Y.; Burgess, K.; Saragovi, H. U.
Selective small molecule peptidomimetic ligands of TrkC and of
TrkA receptors afford discrete or complete neurotrophic activities.
Chem. Biol. 2005, 12, 1015–1028.
(19) Kaplan, D. R.; Miller, F. D. Neurotrophin signal transduction in
the nervous system. Curr. Opin. Neurobiol. 2000, 10, 381–391.
(20) LeSauteur, L.; Wei, L.; Gibbs, B.; Saragovi, H. U. Small peptide
mimics of nerve growth factor bind TrkA receptors and affect
biological responses. J. Biol. Chem. 1995, 270, 6564–6569.
(21) LeSauteur, L.; Cheung, N. K. V.; Lisbona, R.; Saragovi, H. U.
Small molecule nerve growth factor analogs image receptors in
vivo. Nature Biotechnol. 1996, 14, 1120–1122.
In summary, peptidomimetic 6dh is a ligand of TrkC, and
an antagonist of TrkC-NT-3 activity. Our findings further
demonstrate that peptidomimetic molecules can be made to
act specifically on certain Trk receptors. Finding a small,
stable molecule with selective agonist/antagonistic activity
may be useful as a therapeutic agent.
Acknowledgment. We thank the National Institutes of
Health (MH070040, GM076261), and the Robert A. Welch
Foundation (A-1121) to K.B., and by the Canadian Institutes
of Health Research grant 1192060 to H.U.S. TAMU/LBMS-
Applications Laboratory provided mass spectrometric sup-
port. We thank Eunhwa Ko for taking the NMR data for
mimic 6dh. The NMR instrumentation in the Biomolecular
NMR Laboratory at Texas A&M University was supported by
a grant from the National Science Foundation (DBI-9970232)
and the Texas A&M University System.
Supporting Information Available: Details of the compound
purities, procedure for syntheses of compounds 1-6, and char-
acterization of representative dimers. This material is available
(22) Maliartchouk, S.; Debeir, T.; Beglova, N.; Cuello, A.; Gehring, K.;
Saragovi, H. Genuine monovalent ligands of TrkA nerve growth
factor receptors reveal a novel pharmacological mechanism of
action. J. Biol. Chem. 2000, 275, 9946–9956.
(23) Longo, F. M.; Manthorpe, M.; Xie, Y. M.; Varon, S. Synthe-
tic NGF peptide derivatives prevent neuronal death via a p75
receptor-dependent mechanism. J. Neurosci. Res. 1997, 48, 1–17.
(24) Xie, Y.; Tisi, M. A.; Yeo, T. T.; Longo, F. M. Nerve growth
factors(NGF) loop 4 dimeric mimetics activate ERK and AKT and
promote NGF-like neurotropic effects. J. Biol. Chem. 2000, 275,
29868–29874.
References
(1) Skaper, S. D. The biology of neurotrophins, signalling pathways,
and functional peptide mimetics of neurotrophins and their recep-
tors. CNS Neurol. Disord.: Drug Targets 2008, 7, 46–62.
(2) Ivanisevic, L.; Saragovi, H. U. The Neurotrophins. In Handbook of
Biologically Active Peptides; Kastin, A. J., Ed. Elsevier: New York,
2006; pp 1407-1413.
(3) Pollack, S. J.; Harper, S. J. Small molecule Trk receptor agonists
and other neurotrophic factor mimetics. Curr. Drug Targets: CNS
Neurol. Disord. 2002, 1, 59–80.
(25) Xie, Y.; Longo, F. M. Neurotrophin small-molecule mimetics.
Prog. Brain Res. 2000, 128, 333–347.
(26) O’Leary, P. D.; Hughes, R. A. Design of potent peptide mimetics of
brain-derived neurotrophic factor. J. Biol. Chem. 2003, 278, 25738–
25744.
(4) Friedman, W. J.; Greene, L. A. Neurotrophin signaling via Trks
and p75. Exp. Cell Res. 1999, 253, 131–142.
(27) Feng, Y.; Wang, Z.; Jin, S.; Burgess, K. Conformations of
peptidomimetics formed by SNAr macrocyclizations: 13- to
16-membered ring systems. Chem.;Eur. J. 1999, 5, 3273–3278.
(28) Pattarawarapan, M.; Zaccaro, M. C.; Saragovi, U.; Burgess, K.
New templates for synthesis of ring-fused C10 β-turn peptidomi-
metics leading to the first reported small-molecule mimic of
neurotrophin-3. J. Med. Chem. 2002, 45, 4387–4390.
(5) Feng, Y.; Pattarawarapan, M.; Wang, Z.; Burgess, K. Solid-phase
SN2 macrocyclization reactions to form β-turn mimics. Org. Lett.
1999, 1, 121–124.
(6) Feng, Y.; Burgess, K. Solid phase SNAr macrocyclizations to give
turn-extended-turn peptidomimetics. Chem.;Eur. J. 1999, 5,
3261–3272.