Table 2 Reaction of ortho-substituted aryl iodides with aryl bromides
bearing electron-withdrawing groups, followed by coupling with aryl
boronic acidsa
Notes and references
1 (a) J. B. Johnson and T. Rovis, Angew. Chem., Int. Ed., 2007, 46, 2,
and references therein; (b) C. Defieber, H. Grutzmacher and
¨
E. M. Carreira, Angew. Chem., Int. Ed., 2008, 47, 4482;
(c) A. Devasagayaraj, T. Stiidemann and P. Knochel, Angew. Chem.,
Int. Ed. Engl., 1996, 34, 2723; (d) A. E. Jensen and P. Knochel, J. Org.
Chem., 2002, 67, 79; (e) C. Amatore, E. Carre, A. Jutand and
´
Y. Medjour, Organometallics, 2002, 21, 4540; (f) A. Jutand, Pure
Appl. Chem., 2004, 76, 565; (g) J. W. Sprengers, M. de Greef,
M. A. Duin and C. J. Elsevier, Eur. J. Inorg. Chem., 2003, 3811;
(h) B. Crociani, S. Antonaroli, A. Marini, U. Matteoli and
A. Scrivanti, Dalton Trans., 2006, 2698; (i) Y. Mace
J. S. Fairlamb and A. Jutand, Organometallics, 2006, 25, 1795; (j) I. S.
´
, A. R. Kapdi, I.
Entry
R1
R2
X
R3
14 Yield (%)b,c
J. Fairlamb, Org. Biomol. Chem., 2008, 6, 3645; (k) M. Pe
´
rez-
rez-
Rodrıguez, A. A. C. Braga, M. Garcia-Melchor, M. H. Pe
´
´
´
1
2
3
4
5
6
7
8
Me
Me
Me
Me
Me
Me
Me
Naphthyl
Naphthyl
Naphthyl
Naphthyl
4-CO2Me
3-CF3
4-CF3
3-NO2
4-NO2
4-CN
H
4-CO2Me
H
H
CH
CH
CH
CH
CH
CH
N
CH
N
N
H
H
H
H
H
H
H
H
84 (61)
85 (60)
89 (66)
78d (10)
90 (7)
77 (70)
70 (61)
94 (85)
88 (75)
84 (73)
95 (80)
Temprano, J. A. Casares, G. Ujaque, A. R. de Lera, R. Alvarez,
F. Maseras and P. Espinet, J. Am. Chem. Soc., 2009, 131, 3650.
2 (a) L. A. Adrio, J. M. Antelo Mıguez and K. K. Hii, Org. Prep.
´
Proced. Int., 2009, 41, 331, and references therein; (b) V. M. Syutkin
and S. Yu. Grebenkin, J. Chem. Phys., 2009, 131, 024502; (c) F. Barth,
S. Martinez and M. Rinaldi-Carmona, US Pat., 7 390 924, 2008.
3 (a) M. Catellani, E. Motti and N. Della Ca’, Acc. Chem. Res., 2008,
41, 1512; (b) M. Catellani, Top. Organomet. Chem., 2005, 14, 21;
(c) J. Tsuji, Palladium Reagents and Catalysts—New Perspectives for
the 21st Century, John Wiley & Sons, Chichester, 2004, p. 409;
(d) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007,
107, 174; (e) F. Faccini, E. Motti and M. Catellani, J. Am. Chem.
Soc., 2004, 126, 78; (f) for related chemistry using norbornene see: 1d;
B. Mariampillai, J. Alliot, M. Li and M. Lautens, J. Am. Chem. Soc.,
2007, 129, 15372; Y.-B. Zhao, B. Mariampillai, D. A. Candito,
B. Laleu, M. Li and M. Lautens, Angew. Chem., Int. Ed., 2009, 48,
1849; F. Jafarpour and P. T. Ashtiani, J. Org. Chem., 2009, 74, 1364;
R. Ferraccioli and A. Forni, Eur. J. Org. Chem., 2009, 3161.
4 E. Motti, A. Mignozzi and M. Catellani, J. Mol. Catal. A: Chem.,
2003, 204–205, 115.
9
10
11
H
4-Me
4-F
H
N
a
Reactions were carried out with Pd(OAc)2 (0.022 mmol), norbornene
(0.55 mmol), diethyl maleate, if used (1.76 mmol), K2CO3 (4.40 mmol),
the aryl iodide (1.10 mmol), the aryl bromide (1.10 mmol) and the aryl
boronic acid (1.32 mmol) in DMF (20 mL) under nitrogen at 105 1C
b
c
for 24 h. Isolated yield. In parentheses: yield in the absence of
d
diethyl maleate. Yield increased to 90% in 90 h.
The reason for the maleic ester effect shown in Tables 1 and
2 should be found in the ability of this olefin to coordinate
palladium species and to stabilize palladium(0). The latter is
known to intervene in the oxidative addition and in the
reductive elimination steps, the former being depressed1a,f
and the latter accelerated.1k
5 Yield and selectivity decrease using a higher or lower amount of
diethyl maleate. The latter was recovered together with ca. 20% of
the corresponding E isomer (fumarate).
6 (a) H. Horino, M. Arai and N. Inoue, Tetrahedron Lett., 1974, 15,
647; (b) C.-S. Li, C.-H. Cheng, F.-L. Liao and S.-L. Wang,
J. Chem. Soc., Chem. Commun., 1991, 710; (c) M. Portnoy,
Y. Ben-David, I. Rousso and D. Milstein, Organometallics, 1994,
13, 3465; (d) M. Catellani, C. Mealli, E. Motti, P. Paoli, E. Perez-
Carreno and P. S. Pregosin, J. Am. Chem. Soc., 2002, 124, 4336.
7 (a) G. Dyker, Angew. Chem., Int. Ed., 1999, 38, 1698; (b) F. Kakiuchi
and N. Chatani, Adv. Synth. Catal., 2003, 345, 1077; (c) A. R. Dick
and M. S. Sanford, Tetrahedron, 2006, 62, 2439.
8 (a) I. P. Beletskaya and A. V. Cheprakov, J. Organomet. Chem.,
2004, 689, 4055; (b) M. Catellani and G. P. Chiusoli, J. Organomet.
Chem., 1992, 425, 151; (c) M. Catellani and G. P. Chiusoli,
J. Organomet. Chem., 1988, 346, C27; (d) C.-H. Liu, C.-S. Li and
C.-H. Cheng, Organometallics, 1994, 13, 18.
9 M. Catellani and E. Motti, New J. Chem., 1998, 22, 759;
M. Catellani, E. Motti and S. Ghelli, Chem. Commun., 2000, 2003.
10 Norbornene thus acts as catalyst. However, to favor its insertion
into the arylpalladium bond of complex 7, norbornene must be
present in sufficient concentration to counteract the Suzuki
coupling11 at this stage. The best results were achieved using half
the stoichiometric amount of norbornene.
To account for our results the maleic ester effect should
lower the reactivity of aryl bromide in respect to that of the
aryl iodide. In view of the extreme complexity of a kinetic
analysis of the sequences involved, however, we refrain from
putting forward speculations, limiting ourselves to the
synthetic results, which offer a valuable tool to the experi-
menter. The methodology indeed offers a valid alternative to
other coupling reactions,2a,11e in particular to the two-step
Suzuki reaction of bifunctional arenes with aryl boronic acids,
inasmuch as these products are obtained in one-pot from
simple and readily available building blocks.
Some of the obtained teraryls (compounds 3 and 14) display
interesting properties in that the presence of ortho substituents
prevents rotation of the aryl rings as evidenced by NMR
spectroscopy.4 For example, the ortho and meta carbons of
the unsubstituted phenyl ring of compound 3 (R1 = i-Pr,
R2 = CO2Me) resonate at four distinct chemical shifts.
In conclusion we have worked out a catalytic sequential
coupling methodology which leads to good selectivity thanks
to the addition of maleic ester to the reaction mixture as ligand
for palladium. As a matter of fact it has become possible to
obtain teraryl derivatives in a one-pot reaction starting from
simple aryl iodides and bromides used in equimolar amounts.
Financial support by MIUR and the University of Parma is
gratefully acknowledged.
11 (a) A. Suzuki, Pure Appl. Chem., 1994, 66, 213; (b) A. Suzuki, Chem.
Commun., 2005, 4759; (c) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz
´
and M. Lemaire, Chem. Rev., 2002, 102, 1359; (d) M. Catellani,
E. Motti and M. Minari, Chem. Commun., 2000, 157;
(e) J. M. Antelo Mıguez, L. A. Adrio, A. Sousa-Pedrares, J. M. Vila
´
and K. K. Hii, J. Org. Chem., 2007, 72, 7771.
12 By-products formation strongly depends on substituents. For example,
in the absence of diethyl maleate p-bromonitrobenzene (Table 2, entry
5) gives an 80% yield of 4-nitrobiphenyl while the meta isomer leads to
the formation of only ca. 20% of the corresponding biphenyl together
with other by-products containing norbornene.
13 As we previously observed,3b,e the presence of the o-CF3 in both
iodobenzene and bromobenzene inhibits the reaction of these aryl
halides with palladacycles of type 9 (Scheme 3). This suggests a strong
interference of the o-CF3 group with the palladium(II) species.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4291–4293 | 4293