pubs.acs.org/joc
3H-indole derivatives are very limited.4 Therefore, a general
Iodine-Mediated Synthesis of 3H-Indoles via
Intramolecular Cyclization of Enamines
and efficient method for the synthesis of 3H-indole deriva-
tives is an attractive and formidable challenge in synthetic
chemistry.5
Zhiheng He, Huanrong Li, and Zhiping Li*
In the course of our studies on C-H bond oxidation and
C-C bond formation,6 we unexpectedly found that elemen-
tal iodine (I2)7 could efficiently promote an intramolecular
cyclization of enamines.8,9 The current process presents a
novel and efficient method to construct the 3H-indole ske-
leton. Herein we report our efforts on the synthesis and
preliminary applications of 3H-indoles.
Department of Chemistry, Renmin University of China,
Beijing 100872, China
Received April 23, 2010
(Z)-Ethyl 2-methyl-3-phenyl-3-(phenylamino)acrylate (1a)
was used as a model substrate for optimization of the reaction
conditions (Table 1). An extensive investigation of a range of
oxidants, bases, and solvents was carried out. The desired
product 2a, ethyl 3-methyl-2-phenyl-3H-indole-3-carboxy-
late, was obtained in 82% yield when elemental iodine was
used as oxidant with K2CO3 as base and DMF as solvent
(entry 1). A lower yield of 2a (60%) was formed when IBr
was employed instead of I2 (entry 2). Hypervalent iodine
reagents, phenyliodine(III) diacetate (PIDA) and pheny-
liodine(III) bis(trifluoroacetate) (PIFA), were much less
effective for 3H-indole formation (entries 3 and 4). Other
inorganic bases, such as Na2CO3, NaHCO3, and Cs2CO3,
gave comparable yields of 2a, while an organic base, 2,6-
lutidine, afforded a lower yield of 2a (Table 1, entries 5-8).
Other solvents were inferior to DMF with regard to the
yield of the desired 3H-indole, for example, CH3NO2 (17%
yield) and toluene (33% yield) (entries 9 and 10). Product
2a was not observed in the absence of I2 or base (entries 11
and 12).
The synthesis of 3H-indoles was achieved via the iodine-
mediated intramolecular cyclization of enamines. A wide
variety of 3H-indole derivatives bearing multifunctional
groups were obtained in good to high yields under
transition metal-free reaction conditions.
Indole alkaloids are ubiquitous heterocycles in natural
products and play pharmacologically important roles
because of the broad spectrum of their biological activ-
ities. Many efforts have therefore been made to synthesize
the indole skeleton.1 3H-Indole is one of the most impor-
tant structural units found in nature2 and has been utilized
as a key scaffold to construct various indoline alkaloids.3
Although there are a variety of methods to synthesize 1H-
indole derivatives, the methodologies for the synthesis of
(5) Fischer indole synthesis presents one of the most powerful synthetic
methods to construct 1H-indoles as well as a few specific 3H-indoles, see:
(a) Xu, D.-Q.; Luo, W.-L.; Yang, S.-P.; Wang, B.-T.; Wu, J.; Xu, Z.-Y. Eur.
J. Org. Chem. 2009, 1007. (b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am.
Chem. Soc. 1999, 121, 10251. (c) Glish, G. L.; Cooks, R. G. J. Am. Chem. Soc.
1978, 100, 6720. (d) Illy, H.; Funderburk, L. J. Org. Chem. 1968, 33, 4283.
(e) Deorha, D. S.; Joshi, S. S. J. Org. Chem. 1961, 26, 3527. (f) Pausacker,
K. H.; Schubert, C. I. Nature 1949, 163, 289. (g) Grgin, D. J. Monatsh Chem.
1906, 27, 731.
(6) (a) Guo, X.; Yu, R.; Li, H.; Li, Z. J. Am. Chem. Soc. 2009, 131, 17387.
(b) Guo, X.; Pan, S.; Liu, J.; Li, Z. J. Org. Chem. 2009, 74, 8848. (c) Li, H.; He,
Z.; Guo, X.; Li, W.; Zhao, X.; Li, Z. Org. Lett. 2009, 11, 4176. (d) Li, Z.; Yu,
R.; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497. (e) Li, Z.; Li, H.; Guo, X.;
Cao, L.; Yu, R.; Li, H.; Pan, S. Org. Lett. 2008, 10, 803. (f) Li, Z.; Cao, L.; Li,
C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505.
(7) For representative reviews, see: (a) Togo, H.; Iida, S. Synlett 2006,
2159. (b) French, A. N.; Bissmire, S.; Wirth, T. Chem. Soc. Rev. 2004, 33, 354.
(8) Representative methodologies for the synthesis of indole derivatives
via intramolecular oxidative coupling reactions. [Pd]: (a) Wurtz, S.; Rakshit,
S.; Neumann, J. J.; Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47,
7230. (b) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew.
Chem., Int. Ed. 2009, 48, 4572. [Cu]: (c) Bernini, R.; Fabrizi, G.; Sferrazza,
A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078. (d) Perry, A.; Taylar,
R. J. K. Chem. Commun. 2009, 3249. (e) Jia, Y.-X.; Kundig, E. P. Angew.
Chem., Int. Ed. 2009, 48, 1636. [IIII]: (f) Yu, W.; Du, Y.; Zhao, K. Org. Lett.
2009, 11, 2417. (g) Du, Y.; Liu, R.; Linn, G.; Zhao, K. Org. Lett. 2006, 8,
5919.
(9) I2-mediated 1H-indole synthesis: (a) Fischer, D.; Tomeba, H.; Pahadi,
N. K.; Patil, N. T.; Huo, Z.; Yamomoto, Y. J. Am. Chem. Soc. 2008, 130,
15720. (b) Kobayashi, K.; Miyamoto, K.; Yamase, T.; Nakamura, D.;
Morikawa, O.; Konishi, H. Bull. Chem. Soc. Jpn. 2006, 79, 1580. (c) Hessian,
K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243. (d) Yue, D.; Larock, R. C. Org.
Lett. 2004, 6, 1037. (e) Amjad, M.; Knight, D. W. Tetrahedron Lett. 2004, 45,
539. (f) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. Angew.
Chem., Int. Ed. 2003, 42, 2406.
(1) For representative reviews, see: (a) Thansandote, P.; Lautens, M.
Chem.;Eur. J. 2009, 15, 5874. (b) Patil, N. T.; Yamamoto, Y. Chem. Rev.
2008, 108, 3395. (c) Kruger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal.
2008, 350, 2153. (d) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
(e) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. (f) Cacchi, S.;
Fabrizi, G. Chem. Rev. 2005, 105, 2873. (g) Alonso, F.; Beletskaya, I. P.; Yus,
M. Chem. Rev. 2004, 104, 3079. (h) Horton, D. A.; Bourne, G. T.; Smythe,
M. L. Chem. Rev. 2003, 103, 893. (i) Hegedus, L. S. Angew. Chem., Int. Ed.
1988, 27, 1113.
(2) Some selected examples, see: (a) Lim, K.-H.; Hiraku, O.; Komiyama,
K.; Koyano, T.; Hayashi, M.; Kam, T.-S. J. Nat. Prod. 2007, 70, 1302.
(b) Kam, T.-S.; Choo, Y.-M. J. Nat. Prod. 2004, 67, 547. (c) Chaturvedula,
U. S. P.; Sprague, S.; Schilling, J. K.; Kingston, D. G. I. J. Nat. Prod. 2003,
66, 528. (d) Sheludko, Y.; Gerasimenko, I.; Kolshorn, H.; Stockigt, J. J. Nat.
Prod. 2002, 65, 1006. (e) Steele, J. C. P.; Veitch, N. C.; Kite, G. C.; Simmonds,
M. S. J.; Warhurst, D. C. J. Nat. Prod. 2002, 65, 85.
(3) (a) Somei, M. S.; Yamada, F. Y. Nat. Prod. Rep. 2005, 22, 73.
(b) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. (c) Witkop, B.; Patrick, J. B.
J. Am. Chem. Soc. 1951, 73, 1558. (d) Rahman, A. U.; Basha, A. Indole
Alkaloids; Hawood Academic Publishers: Amsterdam, The Netherlands, 1997.
(4) (a) Boyarskikh, V.; Nyong, A.; Rainier, J. D. Angew. Chem., Int. Ed.
2008, 47, 5374. (b) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128,
6314. (c) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem.
Soc. 2005, 127, 4592. (d) Hamel, P. Tetrahedron Lett. 1997, 38, 8473. The
electrochemical oxidation: (e) Kobayashi, M.; Sadamune, K.; Mizukami, H.;
Uneyama, K. J. Org. Chem. 1994, 59, 1909.
4636 J. Org. Chem. 2010, 75, 4636–4639
Published on Web 06/04/2010
DOI: 10.1021/jo100796s
r
2010 American Chemical Society